
\
RIA-80-U707

00 '
RAOC-TR-aO-7
Final Technical Report
February 1980

00

ADA08a 051
TECHNICAL
^LffiRAR

^ DISTRIBUTED DATA BASE
TECHNOLOGY STATE-OF-THE-ART REVIEW
Calcuion

Calculon

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DT\C
EUECTE

^AR 1 8 1980

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

r 80 3 17 211

This report has been reviewed by the BADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-80-7 has been reviewed and is approved for publication.

APPROVED; A /^ <*<^fei ft>*>%/

THOMAS L. COLUCClO
Project Engineer

APPROVED:
M£) a***

HOWARD DAVIS
Technical Director
Intelligence & Reconnaissance Division

FOR THE COMMANDER: J^X'^^^^^^

' JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (IRDT), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Vftimn Dmtm Entmfd)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

RADC-TR-80-7
2. GOVT ACCESSION NO,

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtltlm)

DISTRIBUTED DATA BASE TECHNOLOGY STATE-OF-THE-ART
REVIEW

5. TYPE OF REPORT 4 PERIOD COVERED
Final Technical Report
Mar 78 - Sep 79

S. PERFORMING ORG. REPORT NUMBER

N/A
7. AUTHORf*;
Calculon

8. CONTRACT OR GRANT NUMSERfsj

F30602-78-0-0113

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Calculon
121 North Broad Street
Philadelphia PA 19107

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

62702F
45940118

II. CONTROLLING OFFICE NAME AND ADDRESS
Rome Air Development Center (IRDT)
Griffiss AFB NY 13441

12. REPORT DATE

February 1980
13. NUMBER OF PAGES

79
14. MONITORING AGENCY NAME i AOORESSC/» dlHarwtl from ConlrolUnt Ollica)

Same

IS. SECURITY CLASS, (ot rhla ntport)

UNCLASSIFIED

15«. 2ECLAS5IF1CAT10N. DOWNGRADING
SCHEDULE

N/A
IS. DISTRIBUTION STATEMENT ^o/ IrtiJ Reporl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (oi tha abatract antarad In Block 20, II dlllarant Irom Rapon)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas L. Coluccio (IRDT)

19. KEY WORDS (Contlnua on taaataa sida II naeaaaary and idanttty by block number!

Distributed Data Bases
Data Base Integrity
Information Systems
Distributed Processing
Data Base Security

20. ABSTRACT fContlnua on ravaraa 3ida II naeaaaary and Idantily by block numbar)

This document provides theoretical information relating to the development of
information systems where large data bases are utilized. The study considers
the problems associated with the construction, implementation and maintenance
of those data bases in a distributed processing environment. The data base
management systems, data communications networking and the utilization of
multi-processor configurations are also included in the investigation. Four
specific problem areas of the update function under the distributed concept

(Cont'd)

DD ,^73 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE 'Whan Data Entered)

ysaAssinm
SECURITY CLASSIFICATION OF THIS PAGEfH7l«i Dmm Entmnd)

Item 20 (Cont'd)

were studied and are reported upon. They are data integrity, logging and
recovery, deadlock and security.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PACEfWi" Dmtm Bnlmnd)

Table of Contents

Paragraph Title

SUMMARY

Page

iii

1. INTRODOCTION 1-1

II. DATA BASE INTEGRITY 2-1

2.1 INTRODUCTION 2-1

2.1.1 Objective 2-1
2.1.2 Distributed Data Base Systems as the Context for Integrity . 2-2
2.1.3 Definition of Data Base Integrity 2-2

2.2 DEFINITION OF THE PROBLEM 2-3

2.2.1 Component Outage Threat 2-3
2.2.2 Concurrent Update Threat 2-4

2.3 SOLUTIONS TO DATA BASE INTEGRITY PROBLEMS 2-5

2.3.1 Integrity Loss Due to Outages 2-5
2.3.2 Integrity Loss Due to Concurrent Updates 2-6

2.4 ASSESSMENT OF THE STATE-OF-THE-ART 2-10

2.5 AREAS FOR FURTHER STUDY 2-11

III. LOGGING AND RECOVERY 3-1

3.1 DEFINITION OF THE PROBLEM 3-1

3.1.1 Logging and Recovery Functions 3-3
3.1.2 Logging and Recovery Operations 3-4

3.2 DISCUSSION OF SOLUTIONS 3-7

3.2.1 Logging 3-7
3.2.2 Rollback and Restart 3-9
3.2.3 Recovery and Restart 3-10

3.3 ASSESSMENT OF THE STATE-OF-THE-ART 3-15

3.4 AREAS FOR FURTHER STUDY 3-16

- L -

Table of Contents (continued)

Paragraph Title Page

17. DEADLOCK 4-1

4.1 IHTRODUCTION 4-1

4.2 THE DEADLOCK PROBLEM 4-2

4.2.1 Concurrency Control 4-2
4.2.2 Locking 4-3
4.2.3 Occurrence of Deadlock 4-4
4.2.4 Deadlock in Distributed Data Base Systems 4-4
4.2.5 Approaches to Solutions 4-5

4.3 S0LD7I0NS TO THE DEADLOCK PROBLEM 4-5

4.3.1 Deadlock Prevention 4-7
4.3.2 Deadlock Avoidance 4-14
4.3.3 Deadlock Detection and Resolution 4-15

4.4 ASSESSMENT OF THE STATE-OF-THE-ART 4-13

4.5 AREAS FOR FURTHER STUDY 4-13

V. DATA BASE SECURITY 5-1

5.1 THE GENERAL SECURITY PROBLEM 5-2

5.2 RELEVANT SECURITY TECHNIQUES 5-3

5.2.1 Telecommunications 5-4
5.2.2 Operating System 5-6
5.2-3 Data Base Management Systems 5-7

5.3 ASSESSMENT OF CURRENT TECHNOLOGY 5-8

5.4 AREAS FOR FURTHER STUDY 5-9

- 11 -

SUMMARY

For several years, RADC has participated in the development of

information systems to assist analysts in the construction, maintenance, and

utilization of large Scientific and Technical (S&T) data bases. Current trends

in computer technology development are leading system designers to consider

distributed processing concepts and, in particular, distributed data bases.

These trends are exemplified by the implementation of more comprehensive

data base management systems (DBMSs), far-flung data communications networks,

and multiprocessor computer configurations.

In present and projected S&T environments, system designers face

complex trade-off evaluations. The benefits of distributed data base systems

are appealing, but they are not available without cost. The costs of additional

processor, storage, and communciations hardware are readily identifiable; costs

of increased complexity or reduced performance are lass easily determined.

To aid in the evaluation of design alternatives in a distributed

data base environment, a study of certain specific problem areas has been

undertaken. The study focused on the updating of distributed data bases.

Updating can involve portions of a data base that are replicated at multiple

nodes in a network, and can involve transactions whose entry, processing, and

data modification each take place at a different node. Several update

transactions can be simultaneously extant in such an environment, and anorrious

processing and control complexity can result.

Four specific update problem areas were studied, viz:

• Data integrity

• Logging and recovery

• Deadlock

•- Security.

A review of the literature was conducted to ascertain the present

state-of-the-art for each problem area. Each was defined as it occurs in

distributed data base systems. Solutions proposed in the literature were

- ixx -

described, compared, and evaluated. The state-of-the-art was assessed, and

areas were identified where further research is needed.

It was found that the problems are not unique to distributed data

bases; they exist also In other, multiuser systems. Distributed data base

configurations, however, compound the problems manyfold. While, in general,

the same solution alternatives prevail as in simpler systems, their implemen-

tation in this environment would be much more difficult and costly.

Most of the reported work is theoretical; few of the proposals have

been implemented. Many of the concepts have not been well developed for

distributed data bases; the references frequently state in effect that the

situation is more complex in distributed data base environments, and they

then return to discussions of simpler systems. Virtually no quantitative

data is reported.

The state-of-the-art is judged to be immature, with considerable

further investigation called for. Of the four areas addressed, security is

probably the least developed. The problem areas studied here are only part

of the overall problem of designing usable distributed data base systems, and

continued parallel study of distributed data processing, DBMSs, communications

networks, and distributed data bases is recommended.

The study report contains an introduction and individual papers on

the four subject areas. Each paper includes a bibliography.

- iv -

EVALUATION

This effort was designed to investigate the problems associated

with the development of distributed processing systems, in general,

with specific emphasis on the problems of the update function. The

effort was undertaken under the R1E (Intelligence Integrated Systems)

Technical Planning Objective and coincides with other efforts within

that thrust.

The value of the effort, although mainly qualitative, rests with the

information contained herein that can be applied by a systems

designer of a distributed system when faced with the trade-off decisions

The effort also reveals the direction in which future research of this

nature should be aimed.

THOMAS L. COLUCCIO
Project Engineer

^^^--X^-O*^/

I. DTTRODUCTION

Distributed data base processing is a state-of-the-art computer capa-

bility. It continues to stimulate many related new systems ideas, techniques,

and architectures.

Distributed processing, in essence, is the utilization of multiple

connected computing facilities to handle data processing requirements. Various

distributed processing hardware networks can be defined, including a centralized

hierarchical network, a centralized/decentralized star network, or a decentral-

ized ring network. Associated with the hardware, various distributed data base

organizations can be defined, ranging from a single central shared data base,

to local data bases with some central control, to totally local data bases.

The major a-?-"' of distributed processing is to place the processing

power and data base where it is needed, even if multiple copies of the data

base are required.

The field of distributed data base processing, being so young, is not

yet based on a foundation of well-developed and generally accepted concepts and

assumptions. One area in which there is general agreement among the research

1-1

and development (R&D) comnnmity is general system architecture of a distributed

system; namely, a collection of independent computers, each of which supports

a portion of the overall data base. These computers would be interconnected

via some type of communication channels which are used to transfer data and

control information. Users would be permitted to enter transactions at any

of the computers; the users' transactions may reference data stored at a remote

site, in which case the distributed system accesses the data by means of the

communication channel. In some cases, the problem of finding remote data

would be automatically handled by the system; in others the user must explicitly

tell the distributed systems the site at which each datum is stored.

The formation of a distributed data base system across computing

facilities increases the control software complexity. This complexity depends

on the processors, storage devices, and data base management systems employed,

as well as on the level of data base control desired. The simplest system is

one that employs compatible processors, storage devices, and data base manage-

ment systems; the most complex system involves different processors, different

storage devices, and different data base management systems.

Distributed Data Base Considerations

Within general distributed system architectures, many different

approaches can be taken regarding distribution of data. For example:

(1) Each data base site could contain a complete copy of the entire
data base.

(2) Each data base site could contain a unique subset of the data
base which:

•• Does not overlap the portions stored elsewhere: this
partitioning of the data base could be accomplished by
assigning each file to a single site, or the unit of
partitioning could be smaller.

• Does overlap the portions stored elsewhere; the impact
of this generalization is that it allows redundant data
to be stored in the data base, meaning that the same
logical data, item is physically stored at several sites.
In such cases, the system is responsible for automatically
updating all copies of the redundant data in response
to users' update transactions.

(3) There may be various combinations of copied and unique subsets.

1-2

Most current R&D operations favor some form of partially redundant

(replicated) data. The distribution of a data base over a computer distributed

network enormously complicates the data base administration function. Perhaps

the most important factors are the distribution of the data across machines and

the amount of data integration. As distribution and integration of data increase,

the data base becomes more accessible to a larger number of users. At the same

time, control operations become increasingly complex. This quandry reduces to

the classical data processing trade-off between flexibility and efficiency. It

is the role of the system designer to balance these two seemingly conflicting

factors.

The objective of this technical report is to present a survey of the

distributed data base state-of-the-art with respect to handling specific problem

areas in the design of distributed data base computer systems. This report is

intended to be a tutorial for the use of Air Force program personnel and con-

tractors, to guide them in the design of Indications and Warning (liW) distri-

buted processing intelligence networks. It is heavily based upon material fou&d

in professional literature. Although this report focuses on computer systems

containing distributed data bases, concepts applicable to computer systems in

general, or to distributed processing networks with centralized data bases, are

not excluded, but it is their relevance to distributed data base systems that

is of interest.

Within the area of distributed data base systems, four specific major

areas were studied; all four are related to updating within a distributed data

base environment. The four areas, discussed in the following four sections,

are:

Data Integrity
Logging and Recovery

- Deadlock
Security.

Each section contains:

Definition of the problem
Discussion of solutions
Assessment of the state-of-the-art
Areas for further study.

1-3

Each section also contains a bibliography of applicable source documents.

In order to facilitate independent use of the four topical discussions,

some repetitive descriptions appear among the four ensuing sections.

1-4

II. DATA BASE INTEGRITY

This section discusses the problem of maintaining the integrity of

a distributed data base. Integrity is here concerned with correctness and

consistency.

2.1 INTRODUCTION

In the distributed data base systems literature the subject of data

integrity figures prominently, particularly as regards the impact of the update

functions. This section of this investigation covers the data integrity issue

including those activities which adversely affect data integrity, together with

the solutions described in the literature, and brief comments are offered

regarding possible future activities in data base integrity.

2.1.1 Obj ective

As organizations move towards the use of shared data bases, it becomes

increasingly important to be able to maintain the integrity of shared data

resources. This is because those managers and users who previously were in

control of the data they used are now being asked to give their data resources

2-1

to a data base administrator over whom they have no control, while they retain

the responsibility for results based on that data. The willingness of managers

and users to release their needed data resources and to trust someone else to

maintain the integrity of their data base will depend, at a minimum, on the

establishemnt of a strong procedure for the maintenance of the integrity of the

data bases. This discussion is intended to comment on certain aspects of this

concern by users.

2.1.2 Distributed Data Base Systems as the Context for Integrity

Data base integrity is a concern for both centralized and distributed

data base systems. In a central data base system, all the data base and its

data management functions are concentrated in a single processing site, even

though there may be other processing functions at other locations. With close

central control of the data, and controlled access to it for inquiry and update,

the data integrity functions are simplified, and consequently relatively easily

managed. However, once the decision is made to distribute the data base among

a number of nodes (or sites), then an additional level of complexity is reached,

particularly when multiple copies of files are located at the various nodes.

Because the distributed data base environment is the subject of this investiga-

tion, and because it represents the more complex and general situation, only

the distributed file arrangement will be considered in this discussion of

threats to integrity and potential solutions.

2-1.3 Definition of Data.Base Integrity

In the broadest sense, data base integrity implies the correctness

and consistency of the stored data. Additional integrity-related issues such

as security and confidentiality of the data are outside the scope of this

discussion.

(1) Correctness. In a condition of integrity, the stored data should
be correct, in the sense that the data remains that which was
placed in storage. The data base system is not responsible for
the absolute accuracy of all facts, since wrong data could have
been entered, but it is responsible that the data should be
changed only when intended.

2-2

(2) Consistency. In a distributed data base system, information
generally exists in multiple or redundant copies at the various
nodes. For data base integrity, it is essential that the
multiple copies of each file are consistent and no differences
exist among the several copies of the same data. This applies
both where files are duplicated and where the same facts are
held in different files. Where the same facts are stored, the
values should be consistent.

In a distributed data base system, the key integrity issue is that

many processes are going on at once at various locations using the various

copies of the data base. Without appropriate integrity safeguards the hazard

is that the various copies of the files will be modified differently and as

a result the integrity of the data base will be compromised.

2.2 DEFINITION OF THE PROBLZM

This chapter discusses the threats to data base integrity which are

characteristic of distributed data base systems. (Other threats which are

outside the scope of the investigation or are discussed elsewhere are physical

threats to the system and data base security issues.) The key threats to data

base integrity of interest result from outages and from the fact that at least

portions of the data base are replicated at more than one node. As a result

of either loss of access to a copy of a file or to concurrent inquiries and

updates to a file, copies of files can get out of synchronism resulting in loss

of data base integrity.

2.2.1 Component Outage Threat

The most obvious threat to integrity results from a component outage

in the distributed data base system. Such a component outage could be a

processor, a storage module, or a communication link that prevents the system

from keeping a part of the data base from being kept in synchronization with

its counterparts elsewhere in the system. If a node is cut off from the system

by communications failure, it could continue to provide service to its connected

users, employing its local data resources. However, any file updates made

either locally or elsewhere in the system will cause those files (and any later

transactions based on those files) to become unsynchronized or inconsistent.

2-3

This will not only lead to erroneous results but will also complicate the

process of bringing the data bases back into coincidence when service is

restored. This will not only lead to operational problems (data and decision

errors) but it may also have legal implications»

2.2.2 Concurrent Update Threat

Whenever a process updates a data base concurrently with another

update process, the integrity of the data base is threatened. Furthermore,

a reading (inquiry) process is threatened by an update process, which can give

the appearance of a loss of data integrity- Rigid control of data base access

can be obtained in a, central data base system but in a distributed data base

system, with numbers of copies of the data base and many processors in opera-

tion, the concurrent access problem is less easily controlled.

For example, given two independent, concurrent processes, P and Q,

which attempt to update the same record A at the same time. The following

events may take place:

• Process P requests and receives a copy of record A

• Process Q requests and receives a copy of record A

• Process P modifies its copy of record A and writes
it back in the data base

• Process Q modifies its copy of record A and writes
it back in the data base.

Because process Q has carried out its processing and update of record A, the

update action of process P has been lost and, as a result, the integrity of

record A has been lost. This resulted from the Independent action of the

processes. Although this example is for a single data base and two sequential

processes, the effect is the same when the actions take place in separate

processors using different copies of the same file.

A corresponding effect can take place if one process R is, for example,

posting transactions to the file while another process, S, is preparing a trial

balance. Depending on the timing of the processes, it is possible that the

2-4

debit side of a transaction will be posted in time to be included in the trial

balance, while the corresponding credit side of the transaction will not be

posted in time to be included, so the trial balance would be out of balance.

In this case, although the data base integrity was maintained in fact, the

integrity of the process (on the inquiry side) was compromised and the data

base integrity will appear to have been lost.

2.3 SOLUTIONS TO DATA BASE INTEGRITY PROBLEMS

Review of the literature relevant to distributed data base integrity

has not revealed any generally satisfactory solution to the integrity problem.

The use of a lockout mechanism is described as an obvious approach which leads

to the possibility of deadlock, discussed elsewhere. The lockout approach,

however, is a scheme which effectively forces the distributed system to function

as a central data base system under central control, on a transaction by trans-

action basis.

This chapter will comment further on identifying when loss of intagrlty

has occurred, on lockout, and on other approaches to ensuring data base integrity.

2.3.1 Integrity Loss Due to Outages

The most obvious integrity threat in a distributed data base system

is that due to outage, particularly of a communication channel between nodes.

If a node is isolated from the system due to communications loss, and it con-

tinues to service its users to the extent possible, then its data base can get

out of synchronism with the data base in the remaining part of the system.

This integrity threat can be countered by arbitrarily cutting off

service to users at the isolated node, so that transactions cannot be made

against its copy of the data base. Because some fraction of the transactions

taking place at a node is likely to require communications with parts of the

data base located elsewhere, this arbitrary cutoff in service is not as serious

as it might at first seem. With this approach, the users know exactly where

they stand, rather than being uncertain as to whether a transaction will be

completed, or whether they will later have to back it out during the recovery

process.

2-5

Another approach would be to limit transactions at the isolated node

to file inquiries. Although this might at first seen useful, it could result

in users taking action based on data that later turns out to have been changed

during the outage period. In addition, even in an inquiry-only situation, it

is likely that a significant fraction of the desired inquiries would require

reference to other nodes. As a result, not all inquiry requests could be pro-

cessed, and the user would not generally know whether he would receive service

or not. Consequently, it is reconmended that no attempt be made to respond to

data base inquiries at the isolated node.

Under conditions of communication loss the isolated node can, however,

provide other services to users, which do not require access to the shared

data base. For example, the processor would presumably inform user terminals

of a cutoff of specific services, and the processor could be used to support

users by queuing up requests for service, so that the users need not keep manual

records to be input when network service is restored. Upon restoration of ■

network access, the first task for the processor (and for the system) would

be to bring the local data base up to date with the system. This would be

done for those files which had been changed during the service outage, and no

transactions would be permitted during the recovery process. The users will

remain locked out until after the recovery process is complete, when the pending

transactions could be released.

2.3.2 Integrity Loss Due to Concurrent Updates

The integrity threat due to concurrent update is less obvious and

more troublesome. As noted in paragraph 2.2.2, a series of independent updates

of a file can result in an update being lost, and independent updates and

inquiries can result in action being taken on data that is no longer current.

The general solution to this problem appears obvious; to lock out the files

from being accessed by more than one process at a time.

Lockout is a process of mutual exclusion in which the object file

(or other subset of the data base) of an update action is accessible to only

one process at a time. Lockout is straightforward to implement in a single

data base system. In a system with multiple data bases or multiple copies of

2-6

the data base, the use of lockout creates a significant processing and communi-

cations load, which grows rapidly with the number of copies of the data base

and nodes, and which adds substantially to transaction turnaround time.

Lockout creates a processing and communications workload because,

before initiating a transaction against the file, the required resources to

carry out the transaction must all be exclusively allocated to the process.

This requires a series of messages to each node holding the file before, during,

and after the transaction. These communications, and the resulting processor/

file actions, introduce a lengthy delay in executing each transaction, which

can become two to three orders of magnitude greater than the lockout process

in a centralized data base system.

For example, a straightforward lockout algorithm in a distributed

system of N nodes requires 5 (N-l) intercomputer messages, in addition to the

processing required locally in the node initiating the transaction. Messages

must flow between the initiating node and each other node as follows:

Lock Request Message
- Lock Grant Message

Update Message
- Update Acknowledgment
- Lock Release Message.

In addition to each message delay, the update execution is also lengthy.

Because of these delays, a straightforward lockout approach is considered

by some to be unsatisfactory in a general-purpose distributed data base system,

anri other methods have been sought. Some of these approaches seek more efficient

ways of propagating the lockout information through the network. An additional

consideration is the hazard that all sites or communication channels may not

be operational when the process begins (or that a site or channel will become

inoperative during the process).

Another approach is for the node where the transaction originates to

forward the transaction to each of the other nodes. Each node then carries out

the update process independently, and the affected file is locked out from other

transactions for a predefined period. This approach reduces the message traffic

between nodes, but significantly increases the hazards, due to the possibility

2-7

of conmunication line outage, or processors or files busy. The process is open

loop and there are no confirmation messages from the nodes. Therefore, there

is the possibility of the update not being carried out in each node, and, a copy

of the data base getting out of synchronism. There is also the problem that the

required lockout time at each node to complete the update will depend on local

traffic, seek time, etc., which will be unknown to the initiating node. Thus,

a sufficiently long fixed lockout time will, on the average, increase the time

associated with carrying out each transaction. Also, there still is no assurance

that all nodes will be updated for every transaction, since there is no clear

way to handle the contingency that a communication line, node, or storage unit

is out-of-service. Thus, the blind, open-ended forwarding of transactions to

nodes for action, without confirmation or followup does not appear to be a

desirable approach to consider.

In the next approach to lockout, designed to reduce the number of

messages between the originating node and other nodes, the update is first

carried out in the originating node. If successful locally, it is presumed

that the update will be successful at the remote locations. The lockout and

update messages are then transmitted to the remote nodes and executed, and

then update acknowledgments are received back from the nodes. When received,

the originator can then transmit lock release messages to the other nodes.

Thus, by using a two-stage process, the number of messages can be reduced to

either 4(N-1) or 3(N-1) messages, depending on whether the update transmission

is combined with the lock request messages or not. A key problem with this

approach that has not received adequate attention is, as with other approaches,

what happens when nodes, communication channels, or storage modules are out

of service, i.e., where are the transactions stored, and how are they reactivated

when equipment comes back on-line. Beyond this, consideration must be given

to the additional complexities which result when a component goes out of service

during any stage of the process.

An algorithm that further reduces the message traffic to 2N messages

has been proposed in the literature. In this case, messages are transmitted

sequentially (daisy-chained) from the originating node to the next node, and

then from that node to the next, and so on. While this reduces the message

2-8

volume substantially, it also greatly increases the connaunications delay time.

This approach also gets into difficulty if a node is out of service, because

the message chain is broken. Consequently, without a sophisticated communica-

tions fallback scheme, this approach is unlikely to be practical in a live

environment.

Communications volume may be further reduced to about 1.5N by a

modified daisy-chain approach, with a voting protocol for lockout setting.

However, it also introduces communications delays and, without a workable

fallback/outage protection scheme, it is also likely to be unacceptable in

practical situations.

Other approaches seek to reduce synchronization costs by reverting

to a form of centralized control of the distributed data base. It has been

proposed that one site be designated as a primary or controlling node for a

specific file or set of files. Thus all update activity for a given file would

be funnelled through its controlling node, regardless of where it originated.

This approach appears attractive for simple applications where it is possible

to partition data base activity on a geographical basis. However, in a more

complex situation the primary site approach cannot avoid the need for global

data base lockout, and the communication costs, delay, and complexity become

high (possibly higher than other approaches due to the need for communications

with the primary node). This approach also results in increased complexity to

handle the consequences of primary site failure (primary site control functions

must be transferred to another location, etc.).

Reviewing these various proposed approaches to handling the concurrent

update problem it appears that, in spite of the communication costs and delays,

and the problems that can result from out-of-service components, the straight-

forward lockout arrangement is to be preferred. Lockout schemes introduce the

possibility of deadlock, which is treated in Section IV. Given solutions to the

deadlock problem, methods are needed for improving message-exchange between nodes

in order to increase communications efficiency and reduce transaction delay.

This is particularly important as the number of nodes becomes greater.

2-9

2.4 ASSESSMENT OF THE STATE-OF-THE-ART

Our review of the literature leaves two general impressions. First,

much of the published work leans toward the academic or theoretical without hard

solutions to specific problems. Integrity is treated as a requirement or a goal

but the means of achieving that goal are generally not described. Second, data

base integrity is said to be principally threatened by the problem of concurrent

updates, the solution to which is lockout, or control of access by the system

to the various copies of the data base. The consequences of lockout are both

increased communications traffic and service time, and the threat of deadlock.

Alternative ways of reducing the communications and processing loads associated

with lockout appear to be a main concern of the literature.

What does not appear to be published are approaches that discuss

practical aspects of assuring data base integrity. Information is not presented

on specific examples of lockout used in operational systems, together with

information on the performance of these examples. Although such information

for specific systems may be considered proprietary, it is also possible that

little firm information exists. If available, specific performance information

for various approaches would be useful to the system designer.

Considerable study has been devoted to the problem of update synchro-

nization, to maintain data base integrity. In practical distributed data base

systems real time update of multiple copies of the data with varying delays are

the key threat (concurrent updates) to integrity. Lockout mechanisms with

serialized updates applied in order to all copies of the data base are required

to ensure integrity. The various update/lockout mechanisms mentioned in the

literature are designed to minimize delay and communication cost, avoid prefer-

ential treatment of nodes, and minimize the need to back out updates. The design

of the system to assure distributed data base integrity must, however, be eval-

uated in the context of the application. It is clear that there is no unique

or optimum solution to the integrity problem, and that integrity assurance must

be an integral part of the system design process.

2-10

2.5 AREAS FOR FURIHEH STUDY

As noted above, the straightforward lockout approach, even with the

deadlock problem and the required message traffic between nodes, appears to be

the cleanest method- for dealing with the threat to distributed data base integrity

due to concurrent transactions. However, practical methods are certainly needed

for improving communications efficiency, perhaps by a pragmatic, rational analysis

of which nodes are involved in each transaction (rather than assuming that all

are). Also needed are practical procedures for dealing with failures, particu-

larly those occurring during the lockout process.

Review of the published literature gives the impression that much of

the development work in distributed data base integrity leans to the theoretical

or academic. Developers of distributed data base systems in the real world,

however, must solve these hypothetical problems in a realistic, practical way.

For example, it should be possible to assess the probability of data base integ-

rity loss due to concurrent transactions based on traffic rates. If that proba-

bility is low enough, then the risk of deadlock will be low. Where concurrent

transactions on a file are unlikely, it may be advantageous to either reject the

transaction (let the user try again) or to call in manual assistance from, say,

the Data Base Administrator to resolve the conflict. We believe that future work

can be usefully directed to examining such pragmatic approaches.

Another area that appears to merit attention is the development of

methods for identifying loss of (or impending threats to) data base integrity

and for verifying that data base integrity has been (or has not been) compromised.

For example, if a data base integrity threat alarm algorithm were developed,

it could substitute for more costly preventive methodologies. The threat alarm

function could monitor ongoing and offered transactions and either delay,

prevent, or call for aawJ review of a transaction which threatens data base

integrity.

Fart of the distributed data base integrity problem is to periodically

verify that data base integrity is preserved and to identify instances where

integrity has been violated. This is an audit process which must run after the

fact, using the transaction history. It would presumably be done during low

2-11

traffic periods and Che transaction files, transactions or users to be audited

would also presumably be selected on a random or on an activity-related basis.

Although data base integrity problems are related primarily to the

concurrency of transactions (both updates and inquiries), the issues of outages

in communications, processors, and data storage ("head crashes") must figure

prominently in the various techniques of integrity assurance. Every activity

must be planned on the assumption that any item of hardware can fail at any time

before, during, or after any transaction. Indeed, there is a small but finite

chance chat multiple features, either independent or related, can occur. Any

scheme designed to ensure data integrity must be able to operate in an environ-

ment of potential failure, or at least to be able to call for assistance in the

event of failure. Presumably the more likely failure scenarios should be handled

automatically by built-in programs and the less likely outages or combinations

of outage would require operacor intervention. An assessment of Che chances

of various Cypes of failure and decisions on programmed versus manual handling

should be made during Che design process. The developmenc of mechods for carrying

out this assessment, and the collection of useful data on failure probabilities

in the real-world environment would be useful system design tools.

Hardware outages are not the only types of failure that the system

will encounter. Failures can also be due to the characteristics of the data

stream, and to programming faults which may occur only during certain data-

related circumstances. As hardware becomes more reliable and software becomes

more complex, it is increasingly important to focus attention on ways of assuring

that: software is both reliable and resilient when faced with a transaction stream.

Experience with computer-based message switching systems (a distributed data

base system has many of the characteristics of such a system) indicates that

traffic handling capacity, service queues, and the essentially uncontrollable

content of the transaction stream provides an environment that is prone to

"software-type" failures. Ocher experience wich airline reservaCion syscems

has shown chat software failures can be as much as an order of magnitude more

likely than hardware failure. As hardware continues to become more reliable,

we believe it is essential that investigations be conducted in practical

approaches to ensuring Che reliability of software.

2-12

BIBLIOGRAPHY

1. Alsfaurg, Peter A. and Day, John D. A Principle for Resilient Sharing
of Distributed Resources. Second .International Conference on Software
Engineering (AGl & IEEE Computer Society). October 1975.

2. Badal, D.Z. Data Base System Integrity. COMPCON Digest of Papers.
Spring 1978.

3. Berg, John L. (Editor). Database Directions; The Next Steps. Proceedings
of the Workshop of the NBS and ACM, Fort Lauderdale, Fla. October 1975.

4. Canning, Richard G. The Challenges of Distributed Systems. EDP Analyzer,
vol. 16, no. 8. August 1978.

5. Champine, G.A. Current Trends in Data Base Systems. IEEE Computer,
May 1979.

-.6. CODASYL Systems Committee. Selection and Acquisition of Data Base
Management Systems. Association for Computing Machinery, March 1976.

7. Date, C.J. An Introduction to Database Systems. Addison-Wesley Publishinp
Co.

8. Davenport, R.A. Distributed Database Technology - A Survey. Computer
Networks vol. 2, no. 3, July 1978. North Holland Publishing Co.

9. Deppe, Mark E. and Fry, James P. Distributed Data Bases; A Summary of
Research. Computer Networks I (1976) pl30-138. North Holland Publishing
Co.

10. Everest, Gordon C. Concurrent Update Control and Database Integrity.
Database Management (J.W. Klimbie & K.L. Koffeman, eds.). North Holland
Publishing Co., 1974.

11. Fry, James P. and Maurer, John. Operational and Technological Issues
in Distributed Data Bases. Data Communications Management, ADERBACH
Publishers, Inc. 1978.

12. Goos, G. and Hartmanis, J. Lecture Notes in Computer Science. Proceedings
of the 1st Conference of the European Cooperation in Informatics,
Amsterdam, August 1976.

13. Hammer, Michael and Shipman, David. An Overview of Reliability Mechanisms
for a Distributed Data Base System. Proceedings of COMPCON, Spring 1978.

14. Hardgrove, W.T. Distributed Database Technology: An Assessment.
Information and Management 1 (1973), pl57-167. North Holland Publishing Co.

2-13

15. Lefkovitz, David. Data Management For On-Line Systems. Hayden Publishing
Co.

16. Maryanski, Fred J. and Fisher, Paul S. Rollback and Recovery in Distributed
Data Base Management Systems. Proceedings of 1977 ACM Annual Conference.

17. Palmer, Ian R. Data Base Systems: A Practical Reference. Q.E.D.
Information Sciences, 1975.

18. Peebles, Richard and Manning, Eric. System Architecture for Distributed
Data Management. IEEE Computer, January 1978.

19. Ramamoorthy, C.V.; Ho, G.S.; and Wah, S.W. Distributed Computer Systems -
A Design Methodology and its Application to the Design of Distributed
Database Systems. Infotech International Ltd., 1979.

20. Ramamoorthy, C.V. and Krishnarao, T. The Design Issues in Distributed
Computer Systems. In Distributed Systems (p375-400), Infotech State of
the Art Report, 1976.

21. Rosenkrantz, Daniel J.; Steams, Richard E.; and Lewis, Philip M. System
Level Concurrency Control for Distributed Database Systems. ACM Transactions
on Database Systems, June 1978.

22. Rothnie, James B. and Goodman, Nathan. A Survey of Research and Development
in Distributed Database Management- Third International Conference on
Very Large Databases. October 6-8, 1977, Tokyo.

23. Verhofstad, Joost S.M. Recovery Techniques for Database Systems. Computing
Surveys, June 1978.

2-14

III. LOGGING AND RECOVERY

This section of the report discusses the state-of-the-art with respect

to logging and recovery/rollback/restart logic within a distributed data base

environment.

3.1 DEFINITION OF THE PROBLEM

The primary distributed data base capability to be provided by logging

and recovery functions is the ability to restore a consistent and up-to-date

data base* state after it has been destroyed by software, hardware, or human

failures. Many secondary distributed data base capabilities (e.g., reports of

data base access) can be provided with the data collected in the logging function.

Logging and recovery/rollback/restart capabilities are mandatory in

any data base system environment. The ability to restore a data base after any

failure that has destoryed all or a portion of that data base is a major data

base system requirement. Providing this restoration service is even more complex

within a distributed data base situation.

* Throughout this section, the term data base is used generically to include the
actual data as well as associated directories, index tables, etc.

3-1

One of the main motivations for distributed data base systems is a

requirement for high data base availability, that is, a need to ensure that a

data base is nearly always accessible. Distributed data base systems seem to

offer this characteristic since availability is not limited by the reliability

of any single component but rather by the reliability of combinations of pro-

cessing nodes and communication links in the network. These combinations can

be configured to achieve arbitrarily high availability. In order to achieve

this reliability, however, it is necessary that the distributed system be able

to cope with the failures of individual components and continue operation.

To do this, the distributed data base system must be provided with a

logging mechanism for use in recovery of lost files, in rollback, and to permit

operation while certain nodes are unavailable. Interprocessor communications

overhead can result in more time-consuming recovery and rollback operations if

several processors are required to participate. It is also likely that within

a distributed data base system there is a larger number of programs interacting

than in a single machine system. Hence, the complexity and effect of any

recovery or rollback procedure may be compounded.

When an executing procedure, an information processor node, or a

communications Link fails, data base recovery is often necessary. Where

appropriate, data base updates that were only partially complete at the time

of the failure must be reversed via rollback techniques, and the failed pro-

cedure(s) restarted to re-execute. If a procedure fails with updates or locks

outstanding at multiple locations, cooperating recovery actions must be ini-

tiated. The condition becomes still more complex in the case of a processor

node communications link failure in a distributed environment. A processor

may fail while some of its resident procedures are indirectly updating remote

data base elements and/or while remote procedures are updating local data base

elements. Some action must be taken to synchronize recovery actions at all

affected processors.

Most proposals agree that a distributed data base processing system

should possess sophisticated software which facilitates recovery when either

a user transaction crashes before completion, or a computer which is responsible

for managing a portion of the data base crashes. Logging and recovery logic

3-2

may have to include consideration of the authorization of operations when one

computer or a set of computers is missing because the computers are down or

because the network has been partitioned into separate computer sets by commu-

nication failures. Provision of adequate techniques for reinserting these

computers into the network when they resume operations must be considered.

In any case, rollback logic requirements should be minimized.

3.1.1 Logging and Recovery Functions

Traditionally, the design of logging and recovery functions is one

of the last data base management system capabilities to receive attention.

Considering that distributed data base system design itself is in its infancy,

one should not be surprised to find that there are many unanswered questions

regarding overall logging and recovery/rollback/restart capabilities within

a distributed data base environment.

Logging and recovery functions within a distributed data base

environment require support tools (tools that are also used in centralized

processing environments), such as:

(1) Log (Journal/Audit Trail) - a secure secondary storage file
which may contain such information as:

• Before/After Control - for each change made to the data
base or a distributed portion of the data base, a mechanism
to record the physical record or updated part of it as it
appeared just prior to and/or just after the change was
made.

• Transaction Log - maintenance of a copy of each transaction
(event) or selected transactions that caused some discrete
action.

• Rollback System Commands - for each change made to the
data base or a distributed portion of the data base, a
system command that would reverse the change made to the
data base.

(2) Data Base Dump - periodic copying of parts of or the entire
data base onto a secondary storage device which is independent
of the production-mode device.

3-3

(3) Checkpoint - a snapshot taken at prespecified intervals of the
entire internal status of each of the distributed data base
system's primary memories and associated components for recovery
purposes.

(4) Executable Code -

• Integrated Data Base Services - on-line modules integrated
into the operating software that are designed to execute
automatic recovery and restart of the entire data base or
distributed portions of the data base.

• Free-standing Data Base Utilities - self-contained utilities
designed to be executed off-line in certain recovery
situations.

3.1.2 Logging and Recovery Operations

In general, a permanent logging record should be made of all trans-

actions which modify the data base in a distributed data base system. Option-

ally, other transactions (i.e., read only) might be logged. A chronological

record of all transactions (or, optionally, only transactions which modify the

data base) would be referred to as a log, journal, or audit trail. In addition

to the actual transaction, a before and after data base control mechanism should

be available to support automated recovery and restart. As an option, a sug-

gestion has been made to log actual system commands that could be used via the

distributed data base system to rollback, under certain circumstances, each

actual update.

At certain points in time, data base dumps of parts such as a node's

distributed data base or the entire data base must be stored on magnetic tape

or other archival storage. Special checks may be carried out to ensure that

the copies are error-free. This process could take a long time, possibly hours,

if a large volume of data is involved. Transaction processing could not be

active while the data base dump is being performed. Once a data base dump

would be complete, a new version of the log must be started. A question here

is whether the old log should be made part of the data base dump, and if so,

with which version of the data base—the one just copied or the prior version.

3-4

Several unanswered situations include synchronization of the dumps (i.e.,

should all nodal data bases be dumped at the same time, and, if so, what can

one do about inoperable nodes), and, if data is replicated, should the dupli-

cated copies be dumped.

At other checkpoints, a copy of parts of or the entire primary

memory and control tables of a node should be made, preferably to archival-

type storage, for restart operations. This checkpointing process is also

costly, and no user application may run during the checkpoint operation.

Synchronization of checkpoints across nodes may also be necessary.

When, part or all..of a distributed data base is to be recovered, the

following type of steps could be taken:

(1) A determination would be made as to which node is or which nodes
are to be restarted. The applicable node or nodes would not be
available for transactions from any node or nodes still running.

(2) All transactions destined for a node to be recovered would have
to be stored elsewhere for future use.

(3) The system fault, if any, causing the node failure would be
repaired, if necessary.

(4) The copies of the data base and memory made at the most recent
dump or checkpoint would be loaded onto the physical devices on
which the data base is stored. (This process of loading the data
base may also require a substantial amount of time and memory.)
After the loading is complete, the entire data or file system
would be exactly as it was immediately after the last dump or
checkpoint.

(5) If before/after controls were saved, all appropriate before/after
transaction controls on the log would be processed in order; the
system will have recovered when this reprocessing is complete.
Another mechanism would be to reprocess all appropriate transactions
on the log file (this would be quite time consuming).

(6) Incoming transactions which were stored during recovery would be
processed.

3-5

Replicated portions of a nodal data base could be recovered by copying

them from another node. Naturally, this situation would require interface logic

with the log file restore operation.

Rollback of certain changes to the distributed data base could be

performed by processing appropriate before/after control information in a reverse

order against the then current data base, or by using reverse system commands

described previously (if created and kept).

It should be noted that more coordination between the checkpoint

information and logging information may be required. For example, the logging

information processed prior to the time of the checkpoint may have to be applied

prior to restoring the memory state to the checkpoint status.

A significant amount of time is required for data dump, checkpoint,

recovery processes, and for maintaining the log journal. There are also costs

for storage of the data base, checkpoints, and log data.

The recovery time increases with the number of logged items to be

processed. Hence, the recovery time increases with the time between the most

recent data base dump or checkpoint and the detection of an error. The greater

the intercheckpoint or dump time, the larger will be the average time between

a dump or checkpoint and detection of an error; thus, average recovery time

increases with interdump or checkpoint time. If the time slice is too small,

too much time is spent in dump or checkpoint processing, and if the time slice

is too large, too much time would be spent during recovery. In a distributed

data base, the problem of logging and recovery is more difficult than in a

centralized data base as a number of concurrent operations may have to be

performed at different processing elements.

Logging and recovery functions (either provided by one or more data

base management systems—i.e., different systems may be used at one or more

network nodes—or by other means) within a distributed data base environment

require system and management support far in excess of those within a traditional

centralized data base environment. Certainly, interactive users operating in

a distributed processing environment pose some unique data base currency problems.

3-6

As a aode may possess a data processing facility which contains data

from other unrelated data bases, and that may be processing applications unrelated

to the distributed data base environment, steps must be taken to isolate those

data and processes from the distributed data base logging and recovery/rollback/

restart logic.

3.2 DISCUSSION OF SOLUTIONS

The following paragraphs discuss possible approaches to:

Logging
- Rollback and restart

Other forms of recovery and restart.

3.2.1 Logging

Each individual node that contains and/or controls data base access

appears to be the appropriate location to maintain the logs of such data base

activity (although a centralized log concept has been proposed). If the concept

of subtransactions is utilized (i.e., the node initiating the update request

generates a transaction for each affected node), each subtransaction should be

logged at each affected node; the originating source transaction may also be

logged at the initiating node (again, here, varying viewpoints can be found).

As a node processor may serve a large number of application tasks, the amount

of recovery information should be minimized. Many existing single machine data

base systems save the before and after images of each data base physical storagt;

unit (e.g., page) that is altered. In order to reduce the amount of log file

space required for such before/after control images, other techniques could be

used. One suggestion has been to log actual commands of the distributed data

base system that would rollback the update performed (unfortunately, this

suggestion relies heavily on the integrity of the actual system which may

itself have caused the failure, and also implies storage and processing costs

for the rollback system commands—commands that do not remove the need for

before/after control information needed for recovery after data base loss).

It has been suggested that the log file also contain restart information

on all application tasks (restart information identifies a stable point at which

an application program can be restarted). By default, the system should then

3-7

write a restart entry whenever an application task is initiated. It might also

be desirable to permit the programmer the ability to indicate a restart point

in a task (note that the CODASYL specifications do not provide a facility for

this operation).

In certain cases, particularly a strict retrieval environment, the

logging of read operations may produce a large number of entries on the log file

that will never be applied in any rollback situation. One proposal suggests

that considerable rollback overhead could be saved if the Data Base Administrator

(DBA) were provided the option of shutting off the logging facility for the

entire system or at selected nodes for retrieval operations, on, optionally,

selective tasks, or if such logging were performed to a separate file. This

could be accomplished at task initiation time. Note that this concept could

also be extended to bulk update operations.

Actual logging must be done to a secure secondary storage file, possibly

on a blocked basis; the log file associated with a data base must be coordinated

with checkpoints of the file (e.g., time-stamps). If logging is done on a

blocked basis (i.e., a block of log entries are gathered in core or on disk),

some vulnerability in recovery/rollback is created as some number of log entries

might be lost in the event of a failure.

It is also interesting to reconsider the problem of when to log, that

is, before or after completing the actual data base updates (e.g., the final

write of the data base, or the transfer of the shadow block (see 3.2.3 below)

pointers). In a centralized environment, this problem is simplified versus a

distributed environment where recovery/rollback may be utilized more heavily

(e.g., in resolving deadlocks).

The logging area will also be influenced by data integrity requirements

(see Section II). A problem faced by data integrity in the case of a replicated

data base in which discrepancies are found between copies is to determine which

version is the most or can be made the most current and accurate. Appropriate

logging tools (e.g., time-stamps) would have to be considered.

3-8

3.2.2 Rollback and Restart

The rollback of an application task by a node or by many nodes (if

affected) is an important element in any recovery scheme for a distributed data

base management system. In a highly integrated data base, the procedure may be

quite complex. The ability should be present to execute rollback concurrently

on distinct nodes (however, a node processor could rollback only one application

at a time).

When the distributed data base system software on a host node

processor determines that an application task terminated abnormally, rollback

procedures must be initiated, the host node processor would have to notify all

affected nodes for this task that rollback must occur and provide the task name,

initiation time, and shared data information. Each node processor that receives

the rollback message must then refuse to accept any operations accessing the

area updated by the terminating task. It has been proposed that the following

rollback procedure could then be carried out at each applicable node:

(1) The log file would be read "backward" to locate the initiation
point of the task.

(2) The log file would then be read "forward" from that point and
the following operations, depending upon the entry on the log
file, would be performed:

• If the entry is an update entry for the task that is being
rolled back, an entry would be made in the update list to
indicate the record or set occurrence whose contents has
been modified (an entry in the update list would consist
of an ordered pair of record of set type and occurrence
indentifiers). The rollbacked data base file would be
restored from the log file.

» If another update entry for the task being rolled back
alters the contents of a record occurrence that was previously
restored (this is indicated by the presence of the record
occurrence on the update list), no action should be taken
with respect to either the update list or rollback data
base file (this will ensure that an updated record is
restored only once to its earliest value in the rollback
procedure).

3-9

(3) If an entry for an application task other than the primary
rollback task references a record or set occurrence for which
an update list entry exists, an entry for that task may also
have to be rolled back (since the task may be operating with
incorrect data). If so, the task name and time of this entry
would be saved in a secondary rollback list.

(4) When the log file has been processed up to the time of termination,
the restoration of the portions of the data base affected by
the primary rollback task would be complete.

(5) The log file then is read "backward" in order to locate, for
each task in the secondary rollback list, the restart point
immediately preceding the time at which the incorrect operation
was detected. Secondary rollback can then proceed.

(6) Messages must be transmitted to the other node processors for
the tasks in the secondary rollback list, indicating that the
tasks should be rolled back to the specified restart point.

The rollback situation is obviously quite complex due to secondary

processing logic. Other suggestions for handling this area, e.g., shared data

lists which could be computed from the subschemas of application tasks, have

been made.

3.2.3 Recovery and Restart

It has been proposed that in a distributed data base system a recovery

procedure must be initiated, at various times, by:

• The computer node which crashed,

• The overall data integrity logic, or

• The overall distributed data base system logic if
a communications failure is encountered and effects
on transactions are suspected.

Local restoration of part of a distributed data base may imply global

restoration; it is not certain that a consistent state can be reached otherwise.

Solutions based on synchronized checkpoints, etc., have been proposed.

The idea of synchronized data base back-up is obviously of interest—

however, it is not clear how to synchronize data base dumps, before/after

controls, and checkpoints (e.g., if a node is busy or down). A possible

3-10

solution is to consider a method made up of a data base dump with before and

after Images to either be added or deleted from the data base dump.

One important design aspect that recovery can impact is deadlock

handlings Due to potential inefficiencies in recovery of distributed data

bases, it has been argued that deadlock prevention is more efficient than

deadlock detection for a distributed data base system. However, an efficient

recovery mechanism can make deadlock detection more attractive.

A proposed key to a recovery scheme appears to be the distributed

data base system design notion of a shadow block. When a transaction updates

a distributed data base block, the old block—called the shadow—should be

kept for the contingency that a failure might occur before the transaction

is completed (sort of automatic rollback). The shadow would be released only

after the transaction had been properly logged and the new updated block had

been properly constructed. After a new block has been constructed by an updating

transaction, two versions of a block would reside on the back-up store, each

representing part of a state of integrity of the data base.

To perform the update-commitment, the transaction must assure that

the shadow would no longer be used as a shadow by other transactions. (This

could be done by performing updates under a lock on the block.) Since at any

time there might have two versions of a block, the distributed data base system

would need two address maps defining for each block the physical locations of

the shadow and the new block. These maps themselves would have to reside on

the back-up store, and should be time-stamped, e.g., with the system-time of

the moment of creation of the entry for recovery/rollback/restart purposes.

The main difficulty of such a scheme in a distributed data base environment

is the design of the update-commitment operation which performs the switchover

from the shadow to the new block. (This operation itself may fail, and recovery

must still be possible.)

3.2.3.1 Recovery and Restart as an Extension of Rollback

A suggestion that recovery could be approached as an extension of

rollback (if the appropriate data base(s) is/are destroyed) has been made.

There are three basic possible approaches in a distributed data base system:

3-11

(1) Design the data base to permit only controlled or restricted
interaction among application tasks.

(2) Extend the single machine recovery mechanism to the distributed
system. This approach would entail rolling-back all data bases
on all backend node processors in the system to the point of
initiation of the faulty task.

(3) Use a selective recovery mechanism to roll-back only those tasks
which have used data provided by the erroneous or terminated
task.

The first approach, avoiding integration in the data base, has little

appeal to the designer of a distributed data base system, although in practice

this might be the most commonly used technique since many users of data base

systems on single machines feel that avoiding integration is the only reliable

means of ensuring data integrity. If this user philosophy were applied to a

distributed data base system, very inefficient utilization of the distributed

system would result. In order to avoid the need for a sophisticated recovery

mechanism in a distributed data base system, two tasks would not be permitted

to have simultaneous update capabilities to the same data base. For an applica-

tion system under this requirement, the distributed data base system recovery

problem could be simplified.

If the single machine approach were to be extended to a distributed

data base system, then the entire data base would be unavailable during recovery.

In a system with a large number of backend or bi-functional node processors,

this approach could result in the recovery of a small portion of a data base

while preventing usage of a large, correct segment of the data. The communication

process involved with this technique would be that a message must be transmitted

to all backend node processors indicating that recovery must begin. The time

of initiation of the faulty program must be provided. This system-wide recovery

approach would ensure that all effects of the erroneous application program

would have been removed from the data base. The main drawbacks to this method

would be that access to uneffected portions of the data base would be prevented

and that unnecessary rollbacks might occur.

3-12

A selective recovery mechanism would overcome the main deficiency of

the systeut-wide recovery strategy by rolling-back only those application tasks

that would be operating with tainted data. Overall system throughput would

increase under these circumstances, as would accessibility to the data base.

The communication overhead which potentially has the most significant

performance effect In a distributed data base system ideally should not exceed

one transmission to each backend node processor if the method Is to be effective.

The computational overhead involved in a selective recovery strategy should be

maintained at a level where it is not significant in terms of system performance.

3.2.3.2 Recovery and Restart as a Stand-Alone Capability

In distributed data base systems which are highly integrated and

support multi-threaded updating, a selective recovery technique would appear

to be required if both performance and integrity are to be preserved.

The responsibility for recovery could be left to each node; local

data base and directory updates could also be logged. In case of a file failure,

the start of day file could be reloaded and the day's activities restored by

processing the log tape. The failed node would be unavailable until the

restoration is complete. A mechanism would have to be developed to inform the

other nodes of the failed node's condition, so that processes do not hold up

awaiting responses. This mechanism could be accomplished by a time-out function

association with each request, or by an explicit message sent from a monitoring

node indicating the unavailability of the failed node. Naturally, recovery

could also proceed from any data base dump/checkpoint/log combination.

Those files that are crucial to system operation could be duplicated

to assure continuous availability. This could be accomplished by placing

redundant physical files and processors at the critical node; another approach

would be to place copies of critical files at more than one node (this, of

course, raises the problem of keeping these files consistent); a third approach

would be to log the file updates to a neighboring node (if the original node

fails, the file can be reconstructed at the neighboring node; the other nodes

in the network would then be informed of the change in location of the critical

file).

3-13

As previously mentioned, the proposed selective recovery methodology

for distributed data base systems requires processing at data definition time,

as well as run time. When a new subschema is requested by the Data Base

Administrator (DBA) and created, a potential shared data list could be computed

by intersecting all subschemas of that schema. The potential shared data

list indicates record and set types that are in common with other subschemas.

Since each application task invokes exactly one subschema during its

execution, the potential data overlap of any two application tasks could then

be determined from their potential shared data lists. In order to maintain

the data overlap information at execution time, the activation of a data base

application task might result in a message being transmitted to all applications

that have the potential to share data with that task. The message would indicate

the application task and subschema names. The information relating active

application tasks and subschemas could be maintained in the data dictionary.

When an application task terminates, a similar message would be sent to all

tasks with intersecting potential shared data lists.

Situations may arise in integrated distributed data bases in which

application tasks share record types, but do not operate upon the contents of

all data items in the record. A similar possibility is that the application

task may access some data items in a read-and-print mode. In either of these

situations, an incorrect value in a data item may not be critical to the function

of the program. Rolling-back a task due to an incorrect value in a noncritical

data item would have an adverse effect on system performance.

The identity of noncritical data items is heavily application task

dependent and can in no way be inferred from a subschema description. Since

the CODASYL specifications do not provide for the identifications of noncritical

data items for recovery purposes, some additional mechanism for their identifi-

cations should be provided to the Data Base Administrator. The simplest approach

would be to maintain in the data dictionary a list of noncritical data items

for each application task.

3-14

When subschemas are intersected to form the potential shared record

list, noncritical data items should be removed from the intersection of the

records. Only those records which intersect on critical data items should be

included in the potential shared data list.

3.3 ASSESSMENT OF THE STATE-OF-THE-ART

Advances in distributed data base systems are among the most signifi-

cant developments in current computer technology; however, techniques for the

analysis and design of distributed data base systems are in their infancy.

Although some consideration has been given to update philosophy (including

deadlock and data integrity), less work has been done on other areas (such

as security, privacy, logging, and recovery/rollback/restart).

The basic issues today in the area of distributed data base systems

are similar to those that have faced traditional data base systems for the

many years. Issues concerning centralized versus decentralized data, level of

redundancy (multiple/replicated copies), privacy, integrity, and security exists

long before the advent of distributed data base technology. These issues are,

however, further complicated by the autonomous and independent nature of a

distributed data base system. For example, these issues increase considerably

in complexity when problems involving multiple-copy data files and nonfunctioning

host computers are introduced.

Specifically, in regard to logging and recovery/rollback/restart

techniques within a distributed data base environment, little, if any, imple-

mentation effort has been expended, and limited design time has been provided.

Coupling the fact that logging and recovery/rollback/restart techniques have

usually been retrofitted into data base systems, with the fact that overall

limited advances in distributed data base systems design have been completed,

indicates that additional research and development (R&D) effort must be spent

in the logging and recovery/rollback/restart areas within a distributed data

base environment.

3-15

3.4 AREAS FOR FgBCTZR STUTJY

In general, several areas require additional research prior to optimum

use of distributed data base systems. Further integration of nodes within

resource-sharing systems is required in order to provide a foundation for

distributed data base systems. This area would involve the transferability

of data, transparency of processes from dissimilar nodes, and the distribution

of resources (data and software) to optimize system performance. Synchronization

of multiple copies of distributed data must also be investigated. Problems

with update, back-up, and concurrent access increase in complexity due to the

distributed environment, and must be fully analyzed. Finally, the capability

of the resource-sharing and distributing systems to store data and execute

programs at any node will depend on the development of data base management

system translation technologies—particularly data query and model translation.

These technologies must be developed in order to achieve the integration of

data base management systems, which is an initial goal of distributed data

base systems.

The following areas are specifically recommended for further study:

(1) Distribution:

• Data:

— Complete copy at each node
Unique copy at each node

o No replication
o Replication

• Directories:

Centralized at one node
- Unique copy at each node

o Centralized control
o No centralized control.

(2) Logging ;

» Where to log:

At node receiving transaction
At each node handling transaction
At each node where transaction causes handling of data

3-16

What to log:

- Transaction

o All
o Update only
o Selected

Before/after Image for update
- Reverse data base commands

Physical:

What medium
- Blocked vs. unblocked

Node failure:

Where to keep transactions

Application tasks:

Restart points
- Subschema data utilization

0 Across nodes
0 Across applications

When to log:

- Before data base access
- After data base access

• Time-stamps

• Data base locking considerations.

(3) Rollback:

• Prevention

• Across nodes

• Secondary rollback

• Shared data lists from subschema data base access.

(4) Recovery:

• Extension of rollback philosophy

• Selective by:

3-17

Application
Node
System

• From:

- Backup
- Other aodes/files
- Logs.

(5) Role of Data Base Administrator

(6) Synchronization/Consistency/Integrity of Updates;

• Data and directories:

- Loss of message
Replication of message

- Process disappearance

• Control:

Centralized/decentralized
All or no transaction applied
(If node down, security/privacy problems, etc.)

•■ Reliability of data and directories.

(7) Restart;

• System

• Node

• Application.

(3) Failure Detection:

• System

• Node

• Data base

• Communication

• Deadlock.

3-18

BIBLIOGRAPHY

1. Adiba, M.; Chupin, J.C.; Demolombe, R.; Gardarin, G.; and LeBihan, J.
Issues in Distributed Data Base Management Systems - A Technical Overview.
Proceedings of the Fourth International Conference on Very Large Data
Bases, p89-110, Grenoble 1978.

2. Alsberg, P.A. and Day, J.D. A Principle for Resilient Sharing of
Distributed Resources. Proc. Second International Conference on Software
Engineering, p562-570, 1976.

3. Aschim, F. Data Base Networks - An Overview. Management Information
vol. 3, no. 1, February 1974.

4. AUERBACH Publishers, Inc. Distributed Data Base for Distributed Processing.
ADEEBACH Computer Technology Reports, 1976.

5. AUERBACH Publishers, Inc. Functions of Data Base Administration in
Production Mode - Part II. AUERBACH Data Base Management Reports, 1976.

6. AUERBACH Publishers, Inc. Trends in Data Base Technology, AUERBACH Data
Base Management Reports, 1977.

7. Bayer, R. Integrity, Concurrency and Recovery in Data Bases. Proc. of
the International Conference of the European Cooperation in Informatics.
August 1976.

8. Booth, G.M. Distributed Databases - Their Structure and Use. Distributed
Systems Infotech State of the Art Report, 1976.

9. Chandy, K.M. et al. Survey of Analytic Models for Rollback and Recovery
Strategies in Data Base Systems. IEEE Transactions on Software Engineering,
March 1975.

10. Davenport, R.A. Distributed Database Technology - A Survey. Computer
Networks vol. 2, no. 3, July 1974. North Holland Publishing Co.

11. Gelenbe, E.~ A Model of Rollback/Recovery with Multiple Checkpoints.
Proceedings of Second International Conference on Software Engineering,
October 1976.

12. Hefaalkar, P.G. and Jung, C. Logical Design Considerations for Distributed
Data Base Systems. Proc. COMPSAC '77, November 1977;

13. Lampson, B. and Sturgis, H. Crash Recovery in a Distributed Data Storage
System. Technical Report, XEROX Palo Alto Research Center.

14. Liebowitz, B.H. and Carson, J.M. Distributed Processing, IEEE Computer
Society, 1978.

3-19

15. Maryanski, Fred J. and Fisher, Paul S. Rollback and Recovery in
Distributed Data Base Management Systems. Proceedings of 1977 ACM
Annual Conference.

16. Ramamoorthy, CV. and Krishnarao, T. The Design Issues in Distributed
Computer Systems. In Distributed Systems (p375-400) , Infotech State of
the Art Report, 1976.

17. Ramamoorthy, C.7.; Ho, G.S.; Krishnarao, T.; and Wah, B.W. Architectural
Issues in Distributed Data Base Systems. ACM, IEEE Proceedings of
Conference on Very Large Data Bases (pl21-126) Tokyo 1977.

18. Rothnie,, J.B. and Goodman, N. A Survey of Research and Development in
Distributed Database Management. Third International Conference on
Very Large Databases (p43-62) 1977.

19. Thomas, R.H. A Majority Consensus Approach to Concurrency Control for
Multiple Copy Databases. ACM Transactions on Database Systems, pl80-209,
June 1979.

20. Thomas, R.H. A Solution to the Concurrency Control Problem for Multiple
Copy Databases. Digest of Papers, C0MPC0N '78 p56-62, March 1978.

21. Thomas, R.H. A Solution to the Update Problem for Multiple Copy Data
Bases Which Uses Distributed Control. Bolt, Beranek and Newman Tech.
Rep BBN-3340, July 1976.

3-20

IV. DEADLOCK

This section discusses distributed data base system deadlock resulting

from concurrent, conflicting needs for data base resources.

4.1 INTRODUCTION

An objective of computer system designers is to improve the utilization

of system resources. One approach is to distribute resources among concurrently

executing tasks.

Requests by separate tasks for resources may be granted in such a

sequence that a group of tasks is unable to proceed, because each task is

monopolizing resources and is waiting for resources currently held by others

in the group. The tasks are then deadlocked.

The resources may be files or other designated portions of the system

data base. The number of tasks in the deadlocked group may be two or more.

Deadlock is a logical problem and it can arise in many contexts.

4-1

When deadlock, occurs, the progress of the involved tasks is halted.

Until some action is taken, the deadlock will persist. Thus, it is necessary

to prevent deadlocks from occurring or to resolve deadlocks that do arise.

This necessity prevails despite the rarity of deadlocks.

In distributed data base systems, as in other computer system con-

figurations, the same logical problem exists. Dealing with it, however, is

much more difficult in this context.

4.2 THE DEADLOCK PROBLEM

Deadlock can occur in any computer system if concurrent users are

forced to wait for each other. Concurrent use alone does not cause deadlock;

it is a side effect of concurrency control.

4.2.1 Concurrency Control

Any data system allowing multiple users of a data base to be active

concurrently must protect those users from each other. In general, a task

should produce the same results in a concurrent environment as it would running

alone. In particular, its data base operations—reading and writing—should

not be affected by the presence of other tasks.

A simple data processing system must provide for concurrent use of

the data base by all of its tasks. A distributed data processing system must

consider concurrent operation of the tasks entered from and processed at each

node, with respect to the system data base. In a distributed data base system,

consideration must also be given to the data bases at each node, including

replicated portions which exist at multiple nodes.

The concurrency issue with respect to a data base arises because of

update. It is obvious that reading during update is hazardous: the reading

task may read data that is partially updated. Concurrent update must also be

prevented. Consider, for example:

» Tasks A and B both intend to update records 1 and 2 in
a file

4-2

• Task A updates 1; next, 3 updates 1 and 2; finally, A
updates 2

• The data base contains A's version of 2 and B's version
of 1, and is now inconsistent.

This scenario could easily occur in a distributed data base system;

if the tasks and records are at different nodes, the sequence of updates may

be unpredictable. Furthermore, if files are replicated, the update sequences

could vary among copies of files. Therefore, some form of concurrency control

is required to prevent errors due to update.

4.2.2 Locking

The most common concurrency control technique is locking (although

there are also other techniques). Locking effectively gives exclusive control

of a resource to one user, and other users are thereby prevented from accessing

the resource until the lock is removed.

Before a task is premitted to begin updating, a lock may be applied

to the data base or a portion thereof. When the task completes its work, the

data portion would be unlocked. In the interim, no other task would be able

to acquire and lock the same portion. Similarly, a reading task that requires

protection from update Interference could lock the data portion that it intends

to read.

Any task encountering a lock while attempting to access the data base

would be unable to proceed, pending unlock.

Operating systems frequently offer locking capability at the file

level. Finer (or coarser) locking granularity is also possible, including:

- The entire data base
- Records
- Data items in certain files
- Data items in certain records

Other sets of data items or instances of such sets.

Locking granularity affects control complexity. Control is also more

complex in distributed data bases. For example, locking/unlocking of data por-

tions nay involve:

4-3

Task and data at different nodes
- Data portion stored in part at several nodes
— Data replicated at multiple nodes

Combinations of the above.

4.2.3 Occurrence of Deadlock

It is conceivable that a task could require exclusive control (locking)

of more than one portion of the data base (say, files). The task (Task 1) could

lock File A and request File B but find B already locked out by another task

(Task 2). At the same time. Task 2 could be awaiting release of File A. The two

tasks would wait for each other—forever. This is deadlock. (Deadlock has also

been called deadly embrace.)

Deadlock results when resources are assigned to processes, and each

process cannot continue unless it is assigned a resource which another process

is using. It can involve any number of processes (tasks) >1 and any number of

resources (data base portions) >1.

Deadlock, when it occurs, is a serious problem. The impasse will not

resolve itself and the tasks will remain uncompleted indefinitely. The locked

data portions will also remain unavailable indefinitely.

4.2.4 Deadlock in Distributed Data Base Systems

Deadlock in a single system is well understood. In distributed data

processing, the locking problem is made more difficult by the existence of

multiple centers of control. If no one processor controls all others, concurrency

must be controlled through cooperating algorithms at each node. In a distributed

data base, deadlock can result from two tasks in different processors accessing

data at two other nodes, and more complex situations can be imagined.

The system control must prevent deadlock or must recognize that it

has occurred and resolve it- Deadlock must be distinguished from other delays,

such as a task that runs forever. Resolution of deadlock must not, after a

deadlock-free period, result in the same deadlock and an interminable cycle.

Deadlock prevention must not prevent a task from ever being run.

4-4

Deadlock is not necessarily a frequent occurrence. One installation

reported two deadlocks in a year of multiuser operation; this was considered

not enough of a problem to warrant any attention. However, it is felt that as

distributed data base systans proliferate and the numbers of concurrent users

grow, deadlock will become a more important consideration.

4.2.5 Approaches to Solutions

In any case, it must be recognized that deadlocks can occur and the

problems must be dealt with^ Deadlock can be prevented in conventional systems

at some cost. (It is said that deadlock is prevented in associative processors

by giving a task exclusive control of the processor's data base; the validity

of this concept to distributed data bases is not clear.) Detection of the

existence of deadlock is also possible, and there are many detection algorithms.

Detected deadlock must be resolved. One of the deadlocked tasks must

be aborted (even if it is done manually) and rerun later. The partially completed

task must be backed out of the system using techniques resembling recovery from

system failure. It is suggested that the resolution of deadlock in a distributed

data base is so difficult that deadlock prevention is better than deadlock

detection. However, it may be true that if recovery procedures are adequate,

deadlock resolution mechanisms are already available.

There is an extensive body of literature on deadlock in data systems,

much of it offering solutions to the less difficult aspects of deadlock. Very

little has been done in extending the research into distributed data base systems,

other than to point out the additional complexities. Some papers deal directly

with the problem, but the discussions do not report the results of implementations.

Thus, the concepts in this paper are basically untested in a distributed data

base environment.

4.3 SOLUTIONS TO THE DEADLOCK PROBLEM

The literature offers three basic approaches to dealing with the

problem of deadlock.. In general, these approaches may be classified as:

Prevention
— Avoidance

Detection and resolution.

4-5

These approaches were initially proposed for configurations that are

simpler than those found in distributed data base systems.

Prevention calls for designing a system so that there is no possibility

that deadlock will occur. This would be an attractive approach if it did not

sacrifice important system features. One simple method of prevention is to

permit only one job to use the system at a time, with job completion a prerequi-

site to execution of another job. Obviously, with only one job extant, deadlock

is by definition impossible. This approach sacrifices concurrent use of the

system.

A more practical solution prevents deadlock by assigning all the

resources needed by a job (task) prior to its initiation. The resources become

affectively locked out, since they may not be assigned to any other job until

released. Deadlock is thus prevented but there may be execution delays—waiting

for resources to be assigned—even though deadlock might not have been logically

possible. The extent of execution delays depends upon the degree of granularity

in data base assignments to tasks.
*

Avoidance of deadlock involves job executions except when deadlock

is possible. The possibility of deadlock must be continuously evaluated. All^

uncompleted transactions must be capable of completion without deadlock; any

resource assignment that would permit deadlock must be prohibited and the

requesting task suspended until a safe state occurs. Substantial inter-node

communication and processing overhead may be incurred-

Detection recognizes that a deadlock exists and calls for resolution

of the situation. Detection is not difficult if the status of each node is

known, but resolution requires eliminating at least one competing task. Since

a task may not be eliminated permanently, it must later be restarted or rerun.

Rerun first requires backing out the task (rollback) at all involved nodes, so

that redundant processing will be prevented. Restart would be even more complex.

A maniial. approach to detection calls for the operator to observe the

occurrence of deadlock and to take action as necessary to resolve the problem.

In a distributed data base environment, this approach may not be feasible.

4-6

4.3.1 Deadlock. Prevention

Deadlock can be prevented by designing a deadlock-free system. In

such a system, the ingredients necessary for deadlock to occur would not all

exist at the same time, and deadlock would then be impossible. The five neces-

sary ingredients are:

- Lockout — exclusive control
- Concurrency — competing tasks
- Additional request — for exclusive control
- No pre-emption — no forced release
- Circular wait.

A system design that does not permit any one (or more) of the five

conditions is sufficient to prevent deadlock from ever occurring. Solutions

to each of these are now considered.

4.3.1.1 Lockout

Lockout is the most widely used solution to the problem of preserving

data integrity during update. Despite the complexities and performance degrada-

tions imposed by locking out portions of the data base, this is the approach

usually proposed for a distributed processing system. Therefore, if concurrent

update is to be permitted, lockout is probably required.

Conceivably, update could be prohibited in some environments, so as

to eliminate the need for lockout. Elimination of update in this context is a

trivial suggestion; this paper addresses update problems.

Lockout because of update is a concern only with respect to that which

is updated. For example, consider two update tasks, one at each of two nodes,

and each task wishes to update its local data base. Assume no replication of

data. It is clear that the update processes do not conflict and cannot, of

themselves, lead to deadlock. (It is assumed that no data dependent or secon-

dary updates by the same tasks are triggered during execution.) Concurrent

update can cause deadlock only if the same portion of the data base is updated.

In this discussion we speak only of update, although if one process, for example,
reads what another process updates, the same need for lockout prevails. Other
combinations of tasks are also relevant.

4-7

In this context, a portion of the data base refers to the level at

which lockout is applied► If files are locked, deadlock can result from con-

current update of a file; if locking is at the data element level, deadlock

could not occur unless the concurrent processes were to update the same data

element.. Thus, it is demonstrated that, while lockout is a necessary ingredient

for deadlock, the locking granularity affects the significance of lockout.

Granularity at the coarsest level implies lockout of the entire data

base whenever an update task is initiated. No concurrent task using the data

base would be permitted. Deadlock would be prevented at gjniaal cost in com-

plexity or overhead. In a batch processing environment, this approach might

be acceptable, but it is obviously not suitable for a distributed processing

network.

Finer granularity offers increased opportunity for concurrent pro-

cessing without the possibility of deadlock. However, as granularity becomes

finer, complexity increases.

(1) Lockout complexity increases dramatically with progression from
files to records to data elements,, or to subsets at those levels.

(2) Specification of the granule to be updated is more difficult
when fine. If the applications programmer is responsible for
granule specification, ordinary JCL or, at most, an OPEN state-
ment should suffice for locking at the file level, while finer
specification places a new burden on the programmer.

(3) File level locking might be managed via a table chat is repli-
cated in each processor. With finer granularity, such a table
might be too large to replicate, and locking control would have
to reside at the nodes of the locked granules. Inter-node
communications would probably be more complex.

4.3.1.2 Concurrency

Concurrency, the second of the five necessary ingredients, refers to

two or more active processes or tasks which could compete for two or more

(lockable) resources. (As before, "resources" means portions of the data base.)

The deadlock problem statement in paragraph 4.2 shows that deadlock is possible

only with at least two tasks and two resources. It is also clear that the

resource requests must be distributed among the tasks; a task that does not

require resources cannot cause a deadlock.

4-8

Competition can be destroyed by serial treatment of tasks for purposes

of resource allocation. This is probably the most straightforward approach to

deadlock prevention. It Involves:

• Assignment of all needed resources before beginning
execution

• Postponement of execution if all resources cannot be
assigned

• Release of all assigned resources upon postponement.

This approach is inherently weak in any processing environment because it:

• Requires knowledge before execution of all resource
requirements; e.g., it cannot accommodate a need for
data that is (indefinable prior to a data base access

• Holds resources longer than necessary—at least from
request time until the time the resource is actually
used.

In using this approach, the weaknesses must be tolerated. All data

requirements must be predefined, and tasks must be designed without data depen-

dent requirements. There would have to be a means for identifying the data

needs prior to execution; presumably, this would impose some workload upon the

programmer. As pointed out above, locking granularity affects the programming

difficulty involved.

The assignment of a task's resources must be essentially a continuous

process. If it is interrupted by the assignment of resources to another task,

the concurrency issue remains unsolved. In a single jobstream, it is simple

to make these assignments. In a distributed data base system, assignment at

various data locations could not be a continuous, uninterruptible process without

imposition of -substantial delays and sacrifice of system capacity► Therefore,

a method is needed to achieve the effect of assignment of resources to one task

at a time.

An algorithm proposed in [1] offers a two-stage reservation process:

• Messages requesting lockout are sent to the nodes
controlling the needed data

4-9

• If all requests can be satisfied, the requests are confirmed
and the task is permitted to proceed; if not, the requests
are cancelled and the task is put in a wait state.

» Conflicts among requesting tasks are resolved by a task
priority scheme.

It is claimed that this algorithm will always work, but will have a considerable

amount of overhead.

In [5], a similar mechanism is suggested, but the requests are passed

from node to node along a fixed path. This preassigned order of nodes eliminates

the need to assign task priorities and is said to improve deadlock prevention

efficiency. It is not clear if, at any node, the processing of a request for

multiple resources may be interruptible by another task's request.

The concept of task priority—to resolve request conflicts—is not

trivial, and many methods have been suggested. Any numbering method that ensures

unique task numbers would suffice, but a method that allows numbering at the

input node, with no need for inter-node communications, would be preferred. A

user identification number might be used, although it is not clear that more than

one identically numbered task could not co-exist. Node number concatenated with

(local) clock time—or perhaps with a consecutive task number—would ensure

uniqueness.

There is a strategy that avoids the need to prioritize tasks. Instead,

files are assigned unique numbers, and requests are processed in order of file

number. This simple scheme prevents deadlock. However, it may involve consid-

erable communications, since the relationship between file numbers and nodes

may lead to multiple messages to a node at different times. Its applicability

where locking granularity is finer than the file level has not been explored.

It must be emphasized that this entire discussion of eliminating

concurrency is based upon preassignment of all needed resources before execution.

This approach is inherently inefficient since it ties up portions of the data

base longer than is necessary. It also prevents the system from processing

tasks that do not completely identify data needs in advance.

4-10

A more efficient method has been proposed requiring preidentification

of data ne§ds but not preassignment. Execution is allowed to begin and avail-

ability is not assessed until the first data access is attempted. At this time,

all files (or finer granules) preidentified by the task are assigned if avail-

able, or execution is suspended. Note that this allows execution to proceed

and files to be used by other tasks for some period of time.

In this proposed method, tasks are grouped into sets of tasks which

use some of the same files. The sets are continually redefined as tasks arrive

or are completed. Deadlock could only occur within a set. File availability

can be assessed by consideration of the tasks in the set, ignoring all others.

Furthermore, control of a set is allocated to a designated node, further simpli-

fying the control process. A task may release a file, even though it may need

it again later. The set controller could then assign the file to a waiting

task, permitting concurrent execution without undue complexity.

This mechanism is described in detail in [5]. It is admitted to

be not easily implemented and to require considerable system overhead when

continually forced to re-examine tasks to determine if requests can be allowed.

4.3.1.3 Additional Request

This is the third of the five necessary ingredients for deadlock to

occur. It refers to a task issuing a request for a locked out data resource

while the task already holds a locked data resource. It was shown in the para-

graph 4.2 discussion that deadlock occurs only when such an additional request

is issued. If all data requests are issued by a task at one time, deadlock

cannot result.

Deadlock caused by additional requests can be eliminated by the

assignment of all data resources before execution in the same manner discussed

previously. In some systems, this solution may not be acceptable. An alter-

native approach to additional request may be appropriate for deadlock prevention.

The solution is simply not to permit additional requests. That is,

any time a task requests resources it must first relinquish all resources

presently held. Locked out data portions must be unlocked before new requests

can be accepted.

4-11

This condition obviously applies if all requests are issued before

execution. Once execution is initiated, if a new data need is identified,

the task may or may not be able to release the portions presently locked,

depending upon the characteristics of the task. If the operating system

automatically releases locked portions when new requests are issued,

• The task may become suspended because another task seizes
the same portion and the first task still needs access
to it, and

• When the task resumes, the data may have been updated and
completion of the task may produce incorrect results.

The burden appears to be placed on the programmer to ensure timely

request/release of data resources. A feasible approach may be to divide tasks

into steps, and to issue requests (e.g,, via JCL) before each step, with auto-

matic release at the end of each step. This approach is identical to the con-

currency solution, except it operates on steps instead of tasks. Of course,

it requires that a task be divisible into steps that can be executed without

regard for data base changes between steps. Also, it requires, as in the con-

currency solution, that all data needs be identifiable prior to execution of

a step.

In the processing of a step's data requests, all the requests must

be handled without interruption for processing some other step's (task's)

requests. Once again, the concurrency discussion applies, and the asynchronous

request processing at the various codes must be handled, using the same tech-

niques .

If step level assignment is feasible, it is a more efficient technique

than task level assignment, since resources would not be needlessly tied up

during steps that do not use them. On the other hand, the overhead, associated

with request processing for each step is greater, especially if the same resource

is used, by several steps. It appears, however, that complexity and overhead

would be reduced if each step (or many of the steps) used only data at one node.

This consideration could influence the data distribution philosophy employed

in designing the network.

4-12

4.3.1.4 No Pre-Emptlon

The fourth necessary ingredient is no pre-emption. This means that

deadlock, can occur only in a system that does not permit a data request to force

the release of data already locked out. If a task were able to pre-empt another's

data assignment, it would not need to wait (interminably) for the resource to

be released; deadlock would be avoidable.

The solution to no pre-emption is pre-emption. A task would have

the ability to override another task's lockout. Presumably, the override

would be conditional; e..g., only when deadlock might occur or has occurred.

Presumably, a priority scheme would identify the pre-emptor and pre-emptee.

It is conceivable' that pre-emption could be feasible in some situations,

as when data has been assigned but not yet accessed. A flag of some sort could

identify such a condition. Whether or not a pre-emption of this nature—after

execution has begun—can affect the validity of results has not been addressed.

In the context of update—where data is undergoing modification—it

appears that pre-emption cannot be permitted. Pre-emption in an update environ-

ment is not suggested in the literature.

4.3.1.5 Circular Wait

The fifth and last necessary ingredient, circular wait, is the

distinguishing characteristic of deadlock. It is represented by a continuous

loop of tasks in which each task holds at least one resource being requested

by the next task in the loop. A minimal loop contains two tasks and two

resources, but the numbers could be much larger. In this paper, the resources

of interest are files or finer data granules.

Circular wait can be prevented by introducing a discontinuity into

the loop, i.e., forcing the string of tasks to be linear, not circular. This

can be accomplished by imposing a linear order upon the data base such that

resource requests are always considered according to a predefined sequence.

For example, assume each file has a unique sequence number. When a task

requests (locked) assignment of several files (or portions within several files),

4-13

the files would be assigned serially, in the order prescribed by their respec-

tive sequence numbers. If a file is already locked for another task, the

requesting task must wait, and no files farther down the list may be assigned

before the locked file becomes available. This way, a task cannot have control

of one file while awaiting the availability of a file with a lower sequence

number. Thus, circular wait is not possible.

It should be noted that this procedure does not require all files

to be assigned before execution of a task may begin. Nevertheless, if all

requests are made at one time, they may be sequenced by the operating system

without any concern on the part of the (task) program. If, instead, the program

requests assignments at different times during execution, the programmer must

ensure that the requests are issued in the sequence prescribed by the file

numbers. This is a severe discipline to impose on the programmer. Furthermore,

developing a preordering strategy (for files) that would be suitable for all

or most programs is probably infeasible in a large data base.

4.3.2 Deadlock Avoidance

Another alternative to prevention of deadlock is avoidance of situa-

tions where deadlock might occur. In avoidance, the system prevents the two

or more processes which could become deadlocked from running concurrently.

It is true that for any set of unexecuted tasks there is at least

one sequence of task execution that cannot lead to deadlock. At worst, the

tasks could be run serially. Any two or more tasks that do not use any files

in common may be run concurrently without danger of deadlock. An execution

sequence is safe if it avoids the possibility of deadlock.

Models have been proposed for the analysis of tasks and their resource

requirements, leading to the identification of safe sequences. (Selection of

the most desirable sequence from a set of safe sequences is a separate problem

and is not addressed here, although some straightforward approaches can be

conceived.) Presumably, the model should be executed whenever the mix of tasks

or resource requirements changes, i.e., when a task is entered or completed or

when a resource is released.

4-14

For a model to operate upon a complete list of tasks and files,

centralized control is an obvious necessity. Furthermore, dispatching of

tasks in accordance with a derived sequence also implies centralized control.

The flow of control information throughout the network and the model computation

frequency suggest an enormous amount of overhead in a distributed system.

This approach to avoidance requires that all data needs be identified

before execution. Thus it is subject to the same weaknesses as are evident

in prevention approaches with the same requirement. It is considered very

unattractive in distributed data base systems because the necessary advance

information is either not available or is distributed so widely as to cause

considerable overhead and delay in any attempt to avoid deadlocks.

A slightly different approach has been suggested whereby files are

assigned to tasks only when there is no risk of deadlock. No details are

available, but it seems that a similar analysis of tasks and resource require-

ments would have to be performed to assess risk. It appears that this sugges-

tion suffers the same weaknesses, without the benefit of generating safe task

sequences. In theory, at least, it would also avoid deadlock.

Most of the literature does not discuss avoidance as a solution to

deadlock. It appears to have little potential value to distributed data bases.

4.3.3 Deadlock Detection and Resolution

If a distributed data base system design allows deadlock to occur,

it must be assumed that it will occur. Detection and resolution are the means

of dealing with that eventuality. Each must be addressed, since:

• In a distributed data base environment it may not be at
all obvious at any one node that a delay is due to deadlock,
so some device is needed to test for and confirm its
existence, and

•- Detection alone only identifies the problem; action is
necessary to allow the system to resume full operation
and to complete the deadlocked tasks.

4-15

4.3.3.1 Detection

As an exercise in logical analysis, deadlock detection seems to have

great appeal to computer science researchers. Numerous algorithms have been

proposed for testing and proving that deadlock in fact exists. Most are based

on maintenance of some form of state graph which is examined to determine if

a circular delay exists. The algorithms' proofs are generally direct, and there

is no doubt that correct techniques are available.

With centralized control, all the information needed to test for

deadlock is available at the controlling processor—task status, resource

requirements, resource status. In a distributed data base system without

centralized control, no processor has enough information to detect all deadlocks,

although a deadlock wholly contained at one node is probably identifiable.

It is suggested that each node manager could broadcast local status to all

other managers, and each would then assess the global picture. Both the

centralized and this decentralized method involve substantial overhead and

may not be acceptable if locking granularity is small.

Despite the overhead, detection offers an important advantage that

is difficult to obtain with prevention methods: there is no need to specify

(and assign) all data requirements in advance. An applications program may

proceed to develop its data needs throughout task execution—based on input

data, file data, computation, etc.—and to request and release data at any

level of granularity without the imposition of deadlock prevention restrictions.

This is a valuable characteristic.

It should also be recognized that detection overhead is not neces-

sarily a costly feature. Deadlock is in many systems a relatively rare

occurrence. Frequent exchange of status data and execution of a detection

algorithm is not essential. In fact, it may be performed only when a task

has been waiting unduly for a file; this seems to be a realistic approach.

4-16

4.3.3.2 Resolution

Resolution is much more complex than detection. When deadlock occurs,

the responsible tasks are unable to continue execution, and some action is

necessary to eliminate this condition. The common solution is to remove one

of the contending tasks; the others may then proceed, free of the deadlock.

A set of priority rules is needed to select the task that will be removed.

Deadlock resolution does not end with the elimination of the deadlock.

Since a task has not been permitted to run to its conclusion, the abort must

be dealt with. In the first place, the resources held by the aborted task must

be released; this obvious step is necessary for the deadlock to be eliminated.

Secondly, the task must be restarted at a later time. How to reschedule it

without reinitiating the same deadlock again and again has been addressed by

a numbering method proposed in [21], The method prevents restarting forever,

but it does not appear to prevent restarting an intolerable number of times.

The third and most complex aspect of task abortion is the need to

back out the task; i.e., to undo what has been done. If a task is to be

restarted, the restart should produce the same results that would have been

attained had the task been initially able to end normally. In particular,

the data base must be restored to its pretask condition.

Backing out of a task as a result of deadlock is similar to recovery

from mid-task failure from some other cause. The effect of any data base

changes must be nullified at every affected node. If the task generated other

tasks—to update files at other nodes or to trigger data-dependent processes—

these must be cancelled; if already initiated, they, too, must be backed-out.

Recovery from an aborted task is discussed at length in Section III (Recovery).

Backout (rollback) because of deadlock is immensely complex in a

distributed data base environment. However, it does not appear to be any

different than backout because of failure. Consequently, if recovery is handled

within a system design, the same facilities can be used for deadlock resolution.

4-17

4.4 ASSESSMENT OF THE STATE-OF-THE-ART

Deadlock 13 a real problem in multiuser computer systems. Distributed

data base systems are more subject to deadlock than are simpler configurations,

because they typically have:

- More concurrent users and
- Replicated portions of the data base.

Since locking is commonly imposed to preserve data base integrity

during update, deadlocks are prone to result. Until a satisfactory alternative

to locking is developed, deadlock will remain a problem. In distributed data

base systems, prevention and resolution of deadlock can be enormously complex

and costly.

Deadlock is an intriguing problem, and it has interested numerous

researchers. Even in the context of distributed data base systems, a young

field within computer science, deadlock has been given some attention. The

problem is well understood, and the applicability of common solutions has been

considered. In general, it has been concluded that the solutions would work,

but the cost would be very high.

The literature is virtually devoid of implementation experience.

The feasibility of solutions has not been tested on real distributed data base

systems. The cost and complexity have not been measured.

Deadlock is presumed to be a relatively rare occurrence. No work

has been reported in measuring or predicting the frequency of deadlock. Without

data on the potential cost of deadlock, there is little guidance available to

help allocate resources to the problem. For the same reason, there is no basis

for describing solutions as costly.

4.5 AREAS FOR FURTHEH STUDY

There is a good theoretical base for the study of deadlock. More

work can be done on deadlock in distributed data base systems, but it can only

keep pace with research into other aspects of distributed data bases. There

is little need for more algorithms Co detect the existence of deadlock.

4-13

Empirical data is badly needed. Studies should be undertaken to:

• Develop algorithms for predicting the frequency of deadlock

• Measure the impact of concepts such as finer locking
granularity on the frequency of deadlock

» Estimate the cost of deadlock prevention methods

• Estimate the cost of deadlock detection and resolution

• Measure the frequency of deadlock in operational installa-
tions and develop empirical cause-and-effect relationships.

4-19

BIBLIOGRAPHY

1. Aschlm, F. Data Base Networks - An Overview. Management Informatics
vol. 3, no. 1, Fefamary 1974.

2. Bayer, R. Integrity, Concurrency and Recovery in Data Bases. Proceedings
of the 1st Conference of the European Cooperation in Informatics, August
1976.

3. Chamfaerlin, D.C.; Boyce, R.F.; and Traiger, I.L. A Deadlock-free Scheme
for Resource Locking in a Data Base Environment. Information Processing
74. Proc. IFIP Congress, August 1974.

4. Champine, G.A. Current Trends In Data Base Systems. IEEE Computer,
May 1979.

3. Chu, w.W. and Ohlmacher, G. Avoiding Deadlock in Distributed Data Bases.
Proceedings of the ACM, 1974.

6. Coffman, E.G. Jr.; Elphick, N.J.; and Shoshani, A. System Deadlocks.
Computing Surveys, vol. 3, no. 2, June 1971.

7. Davenport, R.A. Distributed Database Technology - A Survey. Computer
Networks, vol. 2, no. 3, July 1978.

3. Etchison, K.L. Early Deadlock Detection Mechanism. IBM Technical
Disclosure Bulletin vol. 20, no. 8, p3063-3065, January 1978.

9. Etchison, K.L. Multiple-Owner Multiple-Level Deadlock Detection
Mechanism for Resource Contention Control. IBM Technical Disclosure .
Bulletin vol. 20, no. 8, P3066-3069, January 1978.

10. Everest, G.C. Concurrent Update Control and Database Integrity. Data
Base Management (Kllmbie, J.W. and Koffeman, K.C., Eds.). North Holland
Publishing Co., 1974.

11. Frailey, D.J. A Practical Approach to Managing Resources and Avoiding
Deadlocks. Communications of the ACM vol. 6, no. 5, May 1973.

12. Haberman, A.N. Prevention of System. Deadlock. Communications of the
ACM vol. 12, no. 7, July 1969.

13. Hebalkar, P.G. and Tung, C. Logical Design Considerations for Distributed
Data Base Systems. Proc. COMPSAC '77, November 1977.

14. Isloor, S.S. and Marsland, T.A. An Effective 'On-Line' Deadlock Detection
Technique for Distributed Data Base Management Systems. Proc. COMPSAC '78
Software and Applications Conference, November 1978.

4-20

15. King, P.F. and Collymeyer, A.J. Data Base Sharlngs - An Efficient
Mechanism for Supporting Concurrent Processes. AFIPS 42, 1973.

16. Lamport, L. Concurrent Reading and Writing.
November 1977.

CACM vol. 20, no. 11,

17. Maori, P.P. Deadlock Detection and Resolution in a CODASYL-Based
Data Management System, Proceedings of 1976 ACM-SIGMOD International
Conference on Management of Data.

18. Maryanski, F.J. A Survey of Developments in Distributed Data Base
Management Systems. IEEE Computer, February 1978.

19. Peebles, R. and Manning, E. System Architecture for Distributed Data
Management. IEEE Computer, January 1978.

20. Rosenkrantz,. D.J. et al. A System Level Concurrency Control for
Distributed Database Systems. Proc. of 2nd Berkeley Conference on
Distributed Data Management and Computer Networks, May 1977.

21. Rosenkrantz, D.J.; Steams, R.E.; and Lewis, P.M. System Level Concurrency
Control for Distributed Data Base Systems. ACM Transactions on Data
Base Systems, vol. 3, no. 2, June 1973.

22. Rothnie, J.B. and Goodman, N. A Survey of Research and Development in
Distributed Database Management.. Third International Conference on
Very Large Databases, 1977.

23. Schlageter, 6. Access Synchronization and Deadlock Analysis in Database
Systems: An Implementation-Oriented Approach. Information Systems 1,
1975.

24. Stonebraker, M.R. and Neuhold, E. A Distributed Data Base Version of
INGRES. Proceedings of Berkeley Workshop on Distributed Data Base
Management and Computer Networks, May 1977.

25. Thomas, R.H. A Solution to the Update Problem for Multiple Copy Data
Bases which uses Distributed Control. Bolt, Beranek and Newman Tech.
Report BBN-3340, July 1976►

.
26. Thomas, R.H. A Majority Consensus Approach to Concurrency Control for

Multiple Copy Data Bases. ACM Transactions on Database Systems, vol. 4,
no. Zy. June 1979.

27. Zemrowski, Kenneth M. Problems of Data Base Use in a Distributed Data
Network- Tutorial on Distributed Processing, IEEE Computer Society
(IEEE Catalog No. EH0-127-1) 1978.

4-21

V. DATA BASE SECURITY

This section deals with the issue of security as it relates to a

distributed data base. Many of the security considerations are identical to

those encountered in a centralized data base. Those considerations which are

identical are, for the most part, not dealt with here. Instead, we concentrate

on the considerations which arise solely or primarily because the data base is

distributed.

Examples of considerations which are equivalent to those in a single,

centralized data base Include:

(1) Physical Security - Protection against malevolent or accidental
damage as a result of natural disaster (including fire) or the
actions of individuals.

(2) Communications Security — Protection against malevolent or
accidental interruption of the automated coinmunication path
as the result of natural disaster (including fire) or the
actions of individuals.

(3) Data and Program Security - Protection against malevolent or
accidental alteration or disclosure of data, schemas, or
directories.

5-1

(4) Enviroinaental Security - Protection against malfunction of the
system as the result of malevolent or accidental alteration of
the environment. Including power sources and the control of
environmental temperature, humidity, and pollution.

Considerations which are unique to the distributed data base environ-

ment include:

(1) Authorization - The distributed data base envisioned in this
study has an "owner." The "owner" has the responsibility to
determine which user(s) are authorized to add, delete, and
change data base structures and the values of data elements.

In many respects, this problem is no different than in a single
data base, but since segments of the data base may be located
independently of the authority to modify them, there are special
problems in the distributed data base.

(2) Isolation - Within the constraints imposed on the model systems
considered for this study, it is possible and likely that a
node will possess a data processing facility which contains
data from other, unrelated data bases and will be processing
unrelated applications using these unrelated data bases, at
the same time that the distributed data base is being processed.

Steps must be taken to Isolate the data and the processes per-
formed at a node in its own behalf from those in the distributed
data base and vice-versa.

(3) Uniformity - Uniformity of security procedures, practices, and
safeguards must be Imposed in the distributed system, to assure
that each node is as secure as all other nodes, since the security
of the overall system may be compromised by reduced security
at a single node.

A large body of research data and policy papers has been produced on

the subjects of security and privacy in the data base environment. Several are

cited in the accompanying bibliography. However, very little research has been

reported on the special problems which arise in the distributed data base.

5.1 THE GENERAL SECURITY PROBLEM

Generally, the need for security Is not perceived as important by

operating staff on a day-to-day basis. Checks and procedures may frequently

be performed in a perfunctory manner in many computer installations.

5-2

Distributed processing and distributed data bases have increased

security problems many-fold. The administrative and technical overhead of

maintaining a geographically dispersed security system is many times that

of a single location. This very process opens new areas for attack and new

subjects for discussion.

Security of a distributed data base has been largely ignored by

writers. It seems clear that the partition and replication of data and

directories must have some impact on the security of the data; no one has

chosen to address these questions other than by reference, e.g.,

"The security problem can be rendered more or less difficult
in a distributed system than in a centralized one, depending
on details of the system architecture and structure of the
application" [10]

There are, however, a number of well discussed topics which have

peculiar thrust and urgency for the designer of a secure distributed data base

system, and there have been a number of areas mentioned as needing investigatio-

which hinge directly on the characteristics of distributed data base systems.

For example, the question of which processor should act on a given request bas

been treated often, but only in terms of performance criteria such as communi-

cation line loading, processor loading, and memory loading. Processor selection

is, however, an important consideration when considering the security of a

system. The distributed data base system must ensure that processes involving

secure data are performed only on secure machines.

5.2 PTT.TTAMT SECTJRIT7 TECHNIQUES

There are three important components in any security system: access

control; use control; and surveillance. Access control may be effected through

physical or procedural means; a user may, for instance, need a building pass

and a key to gain access to computer equipment and may need passwords or other

identifications to establish a computer interface with the data base. Use

control is performed by the software; it prevents an identified person from

performing operations on the data which have not been authorized for the user.

Surveillance is constant vigalance to detect attempts to break security and

to find and stop those security breaches which will occur.

5-3

Even though security systems may involve much technology, most of

them are administered by people and depend for their success on the attitude

of those using or controlling the system. All too often security systems fail

due to the complacency of those who use it.

There appears to be an inverse relation between the availability of

data and the ease of maintaining security. Tactical data systems present a

unique challenge to the designer. Not only must he deal with problems of data

Trna-crqilability due to equipment failure but those due to covert enemy action.

In tactical systems data must be most available just when it needs to be most

secure.

The following paragraphs discuss some design considerations that

apply to distributed data base systems.

5.2.1 Telecommunications

Distributed processing and distributed data bases have come into use

only recently as the cost of hardware has dropped in relation to the cost of

data communications. It is ironic then that the telecommunications links

represent the single most serious threat to the integrity of the security of

a distributed data network.

The uninformed consider the task to wire tapping difficult and the

extraction of data as so complicated as to require arcane skills and vast

amounts of equipment. Effective wire tapping is easy and the extraction of

data is no great task. Communications lines are as a rule hidden but accessible.

The attachment of tapping leads takes but a moment and can be done in such a

way that the untrained eye cannot detect their presence. Faced with the virtual

guarantee that communication lines will be tapped, the system designer must

seek Trreqnff of denying intelligence to the would-be listener or making the

listener's task so complicated it becomes not worth the effort. Typical efforts

in this direction are:

- High speed lines
Multiple routing

- Multiplexing
- Encryption.

5-4

5.2.1»1 High Speed ULnea

While usually not a sufficient obstacle to prevent the gathering of

information, a high data rate, in lines with little idle time, can make it more

difficult to insert spurious messages. The use of high speed lines will enhance

the effectiveness of other anti-tap measures.

5.2.1.2 Multiple Routing

Successive messages bound for the same destination need not be sent

over the same communication line. By sending successive messages on different

lines, according to some prearranged pattern, the system presents considerable

obstacles to any agency who would listen-in or insert queries or false messages.

The closer the pattern approaches "randomness," the more difficult it will be

to analyze. Random here, of course, means from the viewpoint of an external

observer; even a "random" pattern must be known in detail by sender and receiver.

Even the most "random" pattern will be analyzed in time, and there is a maxi'mrm

interval beyond which one pattern should not be used. This interval is a

function of the length of the pattern and the message rate.

5.2.1.3 Multiplexing

By sending portions of a message via different communication lines,

the secure system greatly increases the workload of the intelligence gatherer

by a factor equal to the number of communication lines devoted to sending one

message. The picture can be farther complicated by altering, again in some

"random" fashion, the lines over which various portions of the message will be

sent.

5.2.1.4 Encryption

Encryption has been traditionally handled via substitution algorithms,

which are very amenable to analysis, or substitution tables, which consume

great aaonsatM of processor time and will eventually be broken anyway. Encryption

has in the past been dismissed as valueless. Recently, the National Bureau

of Standards has issued a Data Encryption Standard (DES) which is based on the

public-key system. The hardware to implement DES is becoming available.

5-5

With DES, the user selected decrypting key is manipulated using

discontinuous mathematical functions (notably modular arithmetic) to generate

an encrypting key. Due to the discontinuity in the generation of the encrypting

key, the decrypting key cannot be derived from it. The encrypting key can be

published for use by anyone wishing to send messages to the key owner. Since

discontinuous functions are again used in the application of the encrypting

key, it is not possible to derive the contents of the encrypted message, even

though the encrypting key is known. At least one commentator [9] feels that

encryption is the only acceptable way to secure communication lines.

Of the four data link securing stratagems suggested, encryption, in

accordance with DES, is by far the best. Multirouting and/or multiplexing

messages impose significant burdens upon the wire tapper, but the expense of

the necessary additional communication lines tends to offset the value of the

relatively cheaper hardware.

5.2.2 Operating System

In the absence of hardware intensive solutions, there are software

protections against modification of data, insertion of false messages, and

unauthorized users:

5.2.2.1 Password/Algorithm

Passwords and sign-on algorithms have long been used in computer

security. Given the off-hand attitude most users have towards such things,

the basic effect of using passwords is to provide a false sense of security.

Unless vigorous procedural standards are followed by all users of the system,

passwords and sign-on algorithms cannot be counted on to stop any but the casual

interloper.

5.2.2.2 Operator/Terminal Relation

One way to increase the effectiveness of passwords and sign-on

algorithms is to have the computer system maintain information on time-of-use

and user-terminal identification. By limiting the hours and the equipment for

which a sign-on is allowed, the system designer can discourage the unauthorized

use of soecific access codes.

5-6

5.2.2.3 Positive Acknowledgment

Positive message acknowledgment serves a twofold purpose. It

provides a check on the proper operation of the communications network and

makes It difficult to delete or insert messages, via wiretap, without detection.

Each message is tagged with a serial number, representing the position of

the message in the session. Positive acknowledgment is expected back, containing

the identification of the previously transmitted message. When acknowledgment

to an unanticipated message number, or an unexpected message number itself

is received, operator notification or link abandonment can occur as seems

appropriate.

5.2.2.4 Positive Operator Identification

Devices exist which can record the significant factors in signatures,

fingerprint, hand geometry, and voice. These devices do not require separable

or losable devices such as keys or compromlsable Information as passwords.

While these devices have good records for keeping out unauthorized persons,

they do occasionally reject authorized persons. The fault lies in the person;

people are too changeable. The false rejection rate is low enough to be

operationally acceptable, but user acceptance usually suffers as a result

of a false rejection.

Attention has already been paid to various methods of validating

appropriate users of coffiffiunications networks. Several additional issues are

raised in distributed data base systems. If the data or directory is centralized,

a degree of security can be maintained by validating a user to a particular

processor. Alternatively, each processor can validate each user either at

sign-on or as the processor is called upon to provide data. The first solution,

depending as it does on centralization, poses a serious threat to data avail-

ability whereas the second involves a great duplication of effort.

5.2.3 Data Base Management Systems

The DBMS protects data against not only active prying but accidental

disclosure. It is recognized that the security of the DBMS is dependent on

the security of the operating system in which the DBMS is associated. In

5-7

addition to such operational security techniques as passwords, etc., DBMSs

usually employ a number of design stratagems.

The DBMS prevents casual and accidental access to the data base in

conjunction with protections provided by the operating system. It does this

because all references to data are handled through the DBMS schema. (The

schema is a description of the physical and logical relationships of the various

data items. It is usually unknown to the average user.) The unauthorized

user must discover the complex logical data relationships of the schema if

he is to use the data base outside the control of the DBMS. The sheer bulk

of data which must be sifted discourages the casual tinkerer.

The authorized user is isolated even farther from the data through

the use of subschema, which is a logical description of those parts of the data

base to which the user or application programs has been granted access. Thus

security considerations have been removed from application areas and placed in

the hands of the Data Base Administrator. (This is based on the perhaps naive

assumption that the Data Base Administrator maintains control of the allocation

of subschema.)

The granularity of the data—that is, the size of the smallest

referenceabla data unit—is important even where subschema are employed. If

the program receives an entire data record, even though it requires only a

few nonsecure data items, the integrity of the security system could be compro-

mised. Many commercially available DBMSs provide a grain size of "data items."

Even where a granularity greater than one data item is required due to DBMS

constraints, the integrity of the system can be maintained by partitioning

the data into secure and nonsecure grains*.

5.3 ASSESSMENT OF CURBENT TECHNOLOGT

In spite of the questions and dangers herein discussed, many areas

of the security function in distributed data base systems are well understood.

Though the technology for wiretapping is easily grasped and wiretap itself

difficult to prevent, the tools for detecting such intrusion are available and

lack only the will to use them. The problem of site security is no different

from that of any other data processing installation. A number of devices and

5-8

s^^i;- l*iff

stratagems are available to control access to secure systems. The principal

danger to the security of distributed data base systems is due to a lack of

understanding of inherent weaknesses of the distributed data base per se.

5.4 AREAS FOR FURTHER STUDY

There is no aspect of distributed data base security which could not

do with more analysis and discussion.

A number of unique characteristics have been identified by investigators

as important to the security of such systems. The distinguishing attribute of

a distributed data base is the partitioning of the data base among a number of

sites. This factor has been mentioned as central to the security problem, but

no analysis has been done. Replication of data can serve to reduce or increase

security problems, depending on the environment. An analysis of the loss,

monetary or strategic, due to unavailability must be made as a prerequisite to

intelligent plans. No tools have been identified to aid in this analysis.

Another question which has been asked deals with the selection of a

processor to handle manipulation of secure data. A site requesting data may

not, from the security standpoint, be the best for processing the raw data.

If the distributed data base system is heterogeneous for the operating system,

the processor site selection can become very important.

The security system itself is affected by distribution. The more

distributed the security system becomes, the more vulnerable to examination

and subversion; yet, if security is centralized, the problem of data unavail-

ability arises, as does the risk of penetrating the telecommunication system.

Several areas have been mentioned as needing further study. These

areas cannot be considered individually. For example, the replication of part

or ^1.1 of the data base has effects on the selection of the processor and the

desirability of having a distributed security system.

5-9

BIBLIOGRAPHY

1. Abrams, M.D.; Branatad, D.K»; Browne, P.S.; and Cotton, I.W. Computer
Security and Integrity. IEEE Computer Society, 1977.

2. Aachim, F. Data Base Networks - An Overview. Management Informatics
vol. 3, no. 1, February 1974.

3. AUERBACH Publishers, Inc. Telecommunications Security and Countermeasures,
1979.

4. AUERBACH Publishers, Inc. Security and Reliability: Design and
Operational Concepts, 1976.

5. Davenport, R.A. Distributed Data Base Technology: A Survey. Computer
Networks, vol. 2, no. 3, July 1973.

6. Deppe, M.E. and Fry, J.P. Distributed Data Bases: A Summary of Research.
Computer Networks, vol. 1, no. 2, November 1976.

7. Downs, D. and Popech, G.J. A Kernel Design for a Secure Database Management
System. Proceedings of a Conference on Very Large Databases, October 1977.

8. Fry, James P. and Maurer, John. Operational and Technological Issues
in Distributed Data Bases. Data Communications Management. AUERBACH
Publishers, Inc., 1978.

9. Maryanski, F.J. A Survey of Developments in Distributed Data Base
Management Systems. IEEE Computer, February 1978.

10. Peebles, Richard and Manning, Eric. System Architecture for Distributed
Data Base Management. IEEE Computer, January 1978.

11. Reiss, S.P. Security in Data Bases: A Combinatorial Study. Journal
of the ACM vol. 26, ao. 1, January 1949.

12. Rothnie, J.B. and Goodman, N. An Overview of the Preliminary Design of
SDD-1: A System for Distributed Data Base. Berkeley Workshop on
Distributed Data Management and Computer Networks, May 1977.

13. Sykes, D.J. Positive Personal Identification. Datamation, November
1978.

14. Ware, Willis H. Handling Personal Data. Datamation, October 1977.

5-10

MISSION
of

Rome Air Devebprnent Center

XAVC pZam and exzajuCzA izAuvidi, development, tut and
Aztzctzd acqwUAJtion p/iogstam in 4>appoAt oi Command, CoiUxat
CowmLnicationA and InteZtLgzncz (C^I) actuActieA. TzcknLcaZ
and tnginzexing Aappoit uiitiUn OAZOA afi tzchnicaZ. competence
l& piovidzd to ESD Pfiogiam OHiazi {P04] and ot^ie^ BSD
zimznti, Thz pKinsJjpat tzchniaaZ mU^ion CUIZOA axz
communccatconA, edecfiomagnettc guidancz and conttad, 4u/i-
vec££ance o^ ground and aeto^pace ob/ectd, -cntedtigence datz
coHectcon and kandLLng, in^otunatioYi *y*tm tzdinoiogy,
lonoApkzfuc propagation, 4oZid Atatz 4ccence&, mcc/iotuave
phtfAicA and ztzctnonic izJUahitcty, mcu.yitjU.nabilLtu and
zompcuUbiLLty.

dt&*jttt*rtt&^&*&^^

